首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   711篇
  免费   62篇
  2023年   4篇
  2022年   9篇
  2021年   14篇
  2020年   9篇
  2019年   11篇
  2018年   15篇
  2017年   20篇
  2016年   20篇
  2015年   41篇
  2014年   47篇
  2013年   38篇
  2012年   44篇
  2011年   48篇
  2010年   41篇
  2009年   29篇
  2008年   36篇
  2007年   26篇
  2006年   33篇
  2005年   20篇
  2004年   19篇
  2003年   20篇
  2002年   24篇
  2001年   21篇
  2000年   20篇
  1999年   20篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   3篇
  1993年   5篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   5篇
  1974年   3篇
  1973年   4篇
  1968年   5篇
  1967年   2篇
  1966年   5篇
  1965年   2篇
排序方式: 共有773条查询结果,搜索用时 15 毫秒
31.
We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.  相似文献   
32.
The ecological interaction between microorganisms and seaweeds depends on the production of secondary compounds that can influence microbial diversity in the water column and the composition of reef environments. We adapted the 3H-leucine incorporation technique to measure bacterial activity in biofilms associated with the blades of the macroalgae Sargassum spp. We evaluated (1) if the epiphytic bacteria on the blades were more active in detritus or in the biofilm, (2) substrate saturation and linearity of 3H-leucine incorporation, (3) the influence of specific metabolic inhibitors during 3H-leucine incorporation under the presence or absence of natural and artificial light, and (4) the efficiency of radiolabeled protein extraction. Scanning electron microscopy showed heterogeneous distribution of bacteria, diatoms, and polymeric extracellular secretions. Active bacteria were present in both biofilm and detritus on the blades. The highest 3H-leucine incorporation was obtained when incubating blades not colonized by macroepibionts. Incubations done under field conditions reported higher 3H-leucine incorporation than in the laboratory. Light quality and sampling manipulation seemed to be the main factors behind this difference. The use of specific metabolic inhibitors confirmed that bacteria are the main group incorporating 3H-leucine but their association with primary production suggested a symbiotic relationship between bacteria, diatoms, and the seaweed.  相似文献   
33.
34.
The ascomycete Podospora anserina is a coprophilous fungus that grows at late stages on droppings of herbivores. Its genome encodes a large diversity of carbohydrate-active enzymes. Among them, four genes encode glycoside hydrolases from family 6 (GH6), the members of which comprise putative endoglucanases and exoglucanases, some of them exerting important functions for biomass degradation in fungi. Therefore, this family was selected for functional analysis. Three of the enzymes, P. anserina Cel6A (PaCel6A), PaCel6B, and PaCel6C, were functionally expressed in the yeast Pichia pastoris. All three GH6 enzymes hydrolyzed crystalline and amorphous cellulose but were inactive on hydroxyethyl cellulose, mannan, galactomannan, xyloglucan, arabinoxylan, arabinan, xylan, and pectin. PaCel6A had a catalytic efficiency on cellotetraose comparable to that of Trichoderma reesei Cel6A (TrCel6A), but PaCel6B and PaCel6C were clearly less efficient. PaCel6A was the enzyme with the highest stability at 45°C, while PaCel6C was the least stable enzyme, losing more than 50% of its activity after incubation at temperatures above 30°C for 24 h. In contrast to TrCel6A, all three studied P. anserina GH6 cellulases were stable over a wide range of pHs and conserved high activity at pH values of up to 9. Each enzyme displayed a distinct substrate and product profile, highlighting different modes of action, with PaCel6A being the enzyme most similar to TrCel6A. PaCel6B was the only enzyme with higher specific activity on carboxymethylcellulose (CMC) than on Avicel and showed lower processivity than the others. Structural modeling predicts an open catalytic cleft, suggesting that PaCel6B is an endoglucanase.  相似文献   
35.
Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)–Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)–biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p < 0.001) in MR signal intensity or a significant decrease (p < 0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p < 0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin–Gd-DTPA–biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p < 0.001) and 3-nitrotyrosine (3-NT) (p < 0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.  相似文献   
36.
37.
38.
39.
Free‐living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose‐binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose‐binding proteins, Ac–fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.  相似文献   
40.
Dipeptidyl peptidase IV (DPP-IV) deactivates the incretin hormones GLP-1 and GIP by cleaving the penultimate proline or alanine from the N-terminal (P1-position) of the peptide. Inhibition of this enzyme will prevent the degradation of the incretin hormones and maintain glucose homeostasis; this makes it an attractive target for the development of drugs for diabetes. This paper reports 3D-QSAR analysis of several DPP-IV inhibitors, which were aligned by the receptor-based technique. The conformation of the molecules in the active site was obtained through docking methods. The QSAR models were generated on two training sets composed of 74 and 25 molecules which included phenylalanine, thiazolidine, and fluorinated pyrrolidine analogs. The 3D-QSAR models are robust with statistically significant r2, q2, and values. The CoMFA and CoMSIA models were used to design some new inhibitors with several fold higher binding affinity. Figure The CoMFA contours around molecule D1T155 (a) steric contours - favored (green); disfavored (yellow) (b) electrostatic contours - electropositive (blue); electronegative (red)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号