首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423篇
  免费   99篇
  1522篇
  2023年   8篇
  2022年   17篇
  2021年   35篇
  2020年   14篇
  2019年   19篇
  2018年   19篇
  2017年   23篇
  2016年   29篇
  2015年   60篇
  2014年   90篇
  2013年   115篇
  2012年   141篇
  2011年   110篇
  2010年   100篇
  2009年   79篇
  2008年   109篇
  2007年   130篇
  2006年   100篇
  2005年   69篇
  2004年   78篇
  2003年   57篇
  2002年   65篇
  2001年   6篇
  2000年   7篇
  1999年   11篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1522条查询结果,搜索用时 10 毫秒
81.
A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which 'higher level' pleiotropic regulators activate 'pathway-specific' regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis and adventitious overexpression of key Streptomyces coelicolor regulators to investigate functional interactions among them. We report here that cluster-situated regulators (CSRs) thought to be pathway-specific can also control other antibiotic biosynthetic gene clusters, and thus have pleiotropic actions. Surprisingly, we also find that CSRs exhibit growth-phase-dependent control over afsR2/afsS, a 'higher level' pleiotropic regulatory locus not located within any of the chromosomal gene clusters it targets, and further demonstrate that cross-regulation by CSRs is modulated globally and differentially during the S. coelicolor growth cycle by the RNaseIII homologue AbsB. Our results, which reveal a network of functional interactions among regulators that govern production of antibiotics and other secondary metabolites in S. coelicolor, suggest that revision of the currently prevalent view of higher-level versus pathway-specific regulation of secondary metabolism in Streptomyces species is warranted.  相似文献   
82.
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE.  相似文献   
83.
Gene silencing by RNA interference (RNAi) has proven to be a powerful tool for investigating gene function in mammalian cells. Combination of several short interfering RNA (siRNA) targeting the same gene is commonly used to improve RNA interference. However, in contrary to the well-described mechanism of RNAi, efficiency of single siRNA compared to pool remains poorly documented. We addressed this issue using several active and inactive siRNA targeting Eg5, a kinesin-related motor involved in mitotic spindle assembly. These siRNA, used alone or in combination, were tested for their silencing efficiency in several cancer cell lines. Here we show that presence of inactive Eg5 siRNA in a pool dramatically decreases knockdown efficacy in a cell line- and dose-dependent manner. Lack of inhibition by unrelated siRNA suggests that a competition may occur during siRNA incorporation into RNA-induced silencing complexes (RISCs) along with the target mRNA. Altogether, our results, which need to be confirmed with additional inactive siRNA, indicate that combination of siRNA may not increase but instead decrease silencing efficiency.  相似文献   
84.
Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages.  相似文献   
85.
Ficolins are soluble oligomeric proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. They act as innate immune sensors by recognizing conserved molecular markers exposed on microbial surfaces and thereby triggering effector mechanisms such as enhanced phagocytosis and inflammation. In humans, L- and H-ficolins have been characterized in plasma, whereas a third species, M-ficolin, is secreted by monocytes and macrophages. To decipher the molecular mechanisms underlying their recognition properties, we previously solved the structures of the recognition domains of L- and H-ficolins, in complex with various model ligands (Garlatti, V., Belloy, N., Martin, L., Lacroix, M., Matsushita, M., Endo, Y., Fujita, T., Fontecilla-Camps, J. C., Arlaud, G. J., Thielens, N. M., and Gaboriaud, C. (2007) EMBO J. 24, 623-633). We now report the ligand-bound crystal structures of the recognition domain of M-ficolin, determined at high resolution (1.75-1.8 A), which provides the first structural insights into its binding properties. Interaction with acetylated carbohydrates differs from the one previously described for L-ficolin. This study also reveals the structural determinants for binding to sialylated compounds, a property restricted to human M-ficolin and its mouse counterpart, ficolin B. Finally, comparison between the ligand-bound structures obtained at neutral pH and nonbinding conformations observed at pH 5.6 reveals how the ligand binding site is dislocated at acidic pH. This means that the binding function of M-ficolin is subject to a pH-sensitive conformational switch. Considering that the homologous ficolin B is found in the lysosomes of activated macrophages (Runza, V. L., Hehlgans, T., Echtenacher, B., Zahringer, U., Schwaeble, W. J., and Mannel, D. N. (2006) J. Endotoxin Res. 12, 120-126), we propose that this switch could play a physiological role in such acidic compartments.  相似文献   
86.
The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer–Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration. Using a preconception-free approach to the choice of the plasmid type, we observed positive and negative synergetic effects, sometimes unexpected and depending on the enzyme and plasmid combinations. Experimental optimization of the culture conditions allowed us to obtain the complete conversion of cyclohexanol (16 mM) and 1-indanol (7.5 mM) at a 0.5-L scale. The yield for the conversion of cyclohexanol was 80% (0.7 g ε-caprolactone, for the productivity of 244 mg·L −1·h −1) and that for 1-indanol 60% (0.3 g 3,4-dihydrocoumarin, for the productivity of 140 mg·L −1·h −1).  相似文献   
87.
88.
The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins. An immunolocalization study of both left ventricle tissue and isolated cardiomyocytes showed a distinct compartmentalization of the SERCA3 isoforms, as a uniform distribution of SERCA3a was detected while -3d and -3f isoforms were observed around the nucleus and in close vicinity of plasma membrane, respectively. Second, we studied their expressions in failing hearts including mixed (MCM) (n=1) and idiopathic dilated (IDCM) cardiomyopathies (n=4). Compared with controls (n=5), similar expressions of SERCA3a and -3d mRNAs were observed in all patients. In contrast, SERCA3f mRNA was found to be up-regulated in failing hearts (125+/-7%). Remarkably, overexpression of SERCA3f paralleled an increase in ER stress markers including processing of X-box-binding protein-1 (XBP-1) mRNA (176+/-24%), and expression of XBP-1 protein and glucose-regulated protein (GRP)78 (232+/-21%). These findings revisit the human heart's Ca(2+)ATPase system and indicate that SERCA3f may account for the mechanism of ER stress in vivo in heart failure.  相似文献   
89.
Four children in three unrelated families (one consanguineous) presented with lethargy, hyperlactatemia, and hyperammonemia of unexplained origin during the neonatal period and early childhood. We identified and validated three different CA5A alterations, including a homozygous missense mutation (c.697T>C) in two siblings, a homozygous splice site mutation (c.555G>A) leading to skipping of exon 4, and a homozygous 4 kb deletion of exon 6. The deleterious nature of the homozygous mutation c.697T>C (p.Ser233Pro) was demonstrated by reduced enzymatic activity and increased temperature sensitivity. Carbonic anhydrase VA (CA-VA) was absent in liver in the child with the homozygous exon 6 deletion. The metabolite profiles in the affected individuals fit CA-VA deficiency, showing evidence of impaired provision of bicarbonate to the four enzymes that participate in key pathways in intermediary metabolism: carbamoylphosphate synthetase 1 (urea cycle), pyruvate carboxylase (anaplerosis, gluconeogenesis), propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase (branched chain amino acids catabolism). In the three children who were administered carglumic acid, hyperammonemia resolved. CA-VA deficiency should therefore be added to urea cycle defects, organic acidurias, and pyruvate carboxylase deficiency as a treatable condition in the differential diagnosis of hyperammonemia in the neonate and young child.  相似文献   
90.
Mass spectrometry (MS) analysis for detection of immunoglobulins (IG) of the human IgG3 subclass is described that relies on polymorphic amino acids of the heavy gamma3 chains. IgG3 is the most polymorphic human IgG subclass with thirteen G3m allotypes located on the constant CH2 and CH3 domains of the gamma3 chain, the combination of which leads to six major G3m alleles. Amino acid changes resulting of extensive sequencing previously led to the definition of 19 IGHG3 alleles that have been correlated to the G3m alleles. As a proof of concept, MS proteotypic peptides were defined which encompass discriminatory amino acids for the identification of the G3m and IGHG3 alleles. Plasma samples originating from ten individuals either homozygous or heterozygous for different G3m alleles, and including one mother and her baby (drawn sequentially from birth to 9 months of age), were analyzed. Total IgG3 were purified using affinity chromatography and then digested by a combination of AspN and trypsin proteases, and peptides of interest were detected by mass spectrometry. The sensitivity of the method was assessed by mixing variable amounts of two plasma samples bearing distinct G3m allotypes. A label-free approach using the high-performance liquid chromatography (HPLC) retention time of peptides and their MS mass analyzer peak intensity gave semi-quantitative information. Quantification was realized by selected reaction monitoring (SRM) using synthetic peptides as internal standards. The possibility offered by this new methodology to detect and quantify neo-synthesized IgG in newborns will improve knowledge on the first acquisition of antibodies in infants and constitutes a promising diagnostic tool for vertically-transmitted diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号