首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3856篇
  免费   415篇
  国内免费   2篇
  4273篇
  2023年   31篇
  2022年   53篇
  2021年   129篇
  2020年   81篇
  2019年   69篇
  2018年   98篇
  2017年   88篇
  2016年   120篇
  2015年   248篇
  2014年   231篇
  2013年   278篇
  2012年   352篇
  2011年   323篇
  2010年   174篇
  2009年   154篇
  2008年   221篇
  2007年   209篇
  2006年   199篇
  2005年   181篇
  2004年   138篇
  2003年   126篇
  2002年   115篇
  2001年   32篇
  2000年   34篇
  1999年   42篇
  1998年   27篇
  1997年   19篇
  1996年   17篇
  1995年   17篇
  1994年   15篇
  1992年   25篇
  1991年   22篇
  1990年   27篇
  1989年   20篇
  1988年   26篇
  1987年   19篇
  1985年   16篇
  1984年   18篇
  1983年   27篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1979年   12篇
  1978年   12篇
  1977年   16篇
  1975年   11篇
  1974年   12篇
  1973年   15篇
  1971年   12篇
  1970年   13篇
排序方式: 共有4273条查询结果,搜索用时 12 毫秒
101.
Plasma, the soluble component of the human blood, is believed to harbor thousands of distinct proteins, which originate from a variety of cells and tissues through either active secretion or leakage from blood cells or tissues. The dynamic range of plasma protein concentrations comprises at least nine orders of magnitude. Proteins involved in coagulation, immune defense, small molecule transport, and protease inhibition, many of them present in high abundance in this body fluid, have been functionally characterized and associated with disease processes. For example, protein sequence mutations in coagulation factors cause various serious disease states. Diagnosing and monitoring such diseases in blood plasma of affected individuals has typically been conducted by use of enzyme-linked immunosorbent assays, which using a specific antibody quantitatively measure only the affected protein in the tested plasma samples. The discovery of protein biomarkers in plasma for diseases with no known correlations to genetic mutations is challenging. It requires a highly parallel display and quantitation strategy for proteins. We fractionated blood serum proteins prior to display on two-dimensional electrophoresis (2-DE) gels using immunoaffinity chromatography to remove the most abundant serum proteins, followed by sequential anion-exchange and size-exclusion chromatography. Serum proteins from 74 fractions were displayed on 2-DE gels. This approach succeeded in resolving approximately 3700 distinct protein spots, many of them post-translationally modified variants of plasma proteins. About 1800 distinct serum protein spots were identified by mass spectrometry. They collapsed into 325 distinct proteins, after sequence homology and similarity searches were carried out to eliminate redundant protein annotations. Although a relatively insensitive dye, Coomassie Brilliant Blue G-250, was used to visualize protein spots, several proteins known to be present in serum in < 10 ng/mL concentrations were identified such as interleukin-6, cathepsins, and peptide hormones. Considering that our strategy allows highly parallel protein quantitation on 2-DE gels, it holds promise to accelerate the discovery of novel serum protein biomarkers.  相似文献   
102.
The spotted owl (Strix occidentalis) is a threatened species in many areas of its western North American range. Concomitant with its decline has been a rapid invasion of its range and habitat by barred owls (Strix varia), a native species that was restricted, until relatively recently, to eastern North America. We assess the theoretical potential for negative interactions between these two owls by examining size dimorphism and ecological relationships within various owl assemblages throughout the world. We then review the anecdotal, natural history, modeling, and experimental evidence that suggest barred owls may negatively affect spotted owls with at least a potential for the competitive exclusion of spotted owls by barred owls throughout all or part of the former’2019;s range. While it is widely accepted that barred owls are either causing or exacerbating declines of spotted owl populations, there are confounding factors, such as habitat loss and bad weather that also may contribute to declines of spotted owls. Both theory and empirical information suggest that barred owls are likely to have negative effects on spotted owl range and density, but the degree of the impact is not predictable. There is a conservation conundrum here, in that the barred owl is a native species that has expanded its range westwards, either naturally or with a degree of human facilitation, and now constitutes a major threat to the viability of another native species, the threatened spotted owl. We propose that only through carefully designed experiments involving removal of barred owls will we be able to determine if recent declines in spotted owl populations are caused by barred owls or by other factors. It is rare in conservation science that replicate study areas exist for which we also have long-standing demographic information, as is the case with the spotted owl. Removal experiments would take advantage of the wealth of data on spotted owls, and allow ecologists to assess formally the impacts of an invasive species on a threatened species, as well as to suggest mitigation measures.  相似文献   
103.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is found in both the cytoplasm and the mitochondria. The gene encoding yeast mitochondrial C1-tetrahydrofolate synthase was isolated using synthetic oligonucleotide probes based on the amino-terminal sequence of the purified protein. Hybridization analysis shows that the gene (designated MIS1) has a single copy in the yeast genome. The predicted amino acid sequence of mitochondrial C1-tetrahydrofolate synthase shares 71% identity with yeast C1-tetrahydrofolate synthase and shares 39% identity with clostridial 10-formyltetrahydrofolate synthetase. Chromosomal deletions of the mitochondrial C1-tetrahydrofolate synthase gene were generated using the cloned MIS1 gene. Mutant strains which lack a functional MIS1 gene are viable and can grow in medium containing a nonfermentable carbon source. In fact, deletion of the MIS1 locus has no detectable effect on cell growth.  相似文献   
104.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   
105.
Seeds of soybean [Glycine max (L.) Merr.] accumulate more isoflavones than any tissue of any plant species. In other plant parts, isoflavones are usually released to counteract the effects of various biotic and abiotic stresses. Because of the benefits to the plant and positive implications that consumption may have on human health, increasing isoflavones is a goal of many soybean breeding programs. However, altering isoflavone levels through marker-assisted selection (MAS) has been impractical due to the small and often environmentally variable contributions that each individual quantitative trait locus (QTL) has on total isoflavones. In this study, we developed a Magellan × PI 437654 F7-RIL population to construct a highly saturated non-redundant linkage map that encompassed 451 SNP and SSR molecular markers and used it to locate genomic regions that govern accumulation of isoflavones in the seeds of soybean. Five QTLs were found that contribute to the concentration of isoflavones, having single or multiple additive effects on isoflavone component traits. We also validated a major locus which alone accounted for up to 10% of the phenotypic variance for glycitein, and 35–37% for genistein, daidzein and the sum of all three soybean isoflavones. This QTL was consistently associated with increased concentration of isoflavones across different locations, years and crosses. It was the most important QTL in terms of net increased amounts of all isoflavone forms. Our results suggest that this locus would be an excellent candidate to target for MAS. Also, several minor QTLs were identified that interacted in an additive-by-additive epistatic manner, to increase isoflavone concentration.  相似文献   
106.
The consumption of transgenic crops and their by-products has become increasingly common in the United States. Yet, uncertainty remains regarding the fate and behavior of DNA within food matrices once it exits the digestive track and enters into wastewater treatment plants (WWTPs). Because many transgenic crops have historically contained antibiotic resistance genes as selection markers, understanding the behavior and uptake of these transgenes by environmental microbes is of critical importance. To investigate the behavior of free transgenic crop DNA, thermophilic anaerobic batch reactors were amended with varying concentrations of transgenic crop genes (i.e., LUG, nptII, and bla) and the persistence of those genes was monitored over 60 days using quantitative PCR. Significant levels of nptII and bla were detected in extracellular DNA (eDNA). Furthermore, LUG maize marker genes were also detected in the control reactors, suggesting that other crop-derived transgenes contained within digested transgenic foods may also enter WWTPs. Possible bacterial transformation events were detected within the highest dose treatments at Days 30 and 60 of incubation. These findings suggest that within the average conventional digester residence times in the United States (30 days), there is a potential for bacterial transformation events to occur with crop-derived transgenes found in eDNA.  相似文献   
107.

Object

Randomized trials have demonstrated a survival benefit for endovascular treatment of ruptured cerebral aneurysms. We investigated the association of surgical clipping and endovascular coiling with outcomes in subarachnoid hemorrhage (SAH) patients in a real-world regional cohort.

Methods

We performed a cohort study involving patients with ruptured cerebral aneurysms, who underwent surgical clipping, or endovascular coiling from 2009–2013 and were registered in the Statewide Planning and Research Cooperative System (SPARCS) database. An instrumental variable analysis was used to investigate the association of treatment technique with outcomes.

Results

Of the 4,098 patients undergoing treatment, 2,585 (63.1%) underwent coiling, and 1,513 (36.9%) underwent clipping. Using an instrumental variable analysis, we did not identify a difference in inpatient mortality [marginal effect (ME), -0.56; 95% CI, -1.03 to 0.02], length of stay (LOS) (ME, 1.72; 95% CI, -3.39 to 6.84), or the rate of 30-day readmissions (ME, -0.30; 95% CI, -0.82 to 0.22) between the two treatment techniques for patients with SAH. Clipping was associated with a higher rate of discharge to rehabilitation (ME, 0.63; 95% CI, 0.24 to 1.01). In sensitivity analysis, mixed effect regression, and propensity score adjusted regression models demonstrated identical results.

Conclusions

Using a comprehensive all-payer cohort of patients in New York State presenting with aneurysmal SAH we did not identify an association of treatment method with mortality, LOS or 30-day readmission. Clipping was associated with a higher rate of discharge to rehabilitation.  相似文献   
108.
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.  相似文献   
109.
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.  相似文献   
110.
Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号