首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   12篇
  2022年   1篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   8篇
  2016年   4篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   28篇
  2011年   18篇
  2010年   13篇
  2009年   11篇
  2008年   21篇
  2007年   19篇
  2006年   14篇
  2005年   18篇
  2004年   18篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1966年   1篇
排序方式: 共有286条查询结果,搜索用时 93 毫秒
131.
Diamond-Blackfan anemia (DBA) is a rare congenital red-cell aplasia characterized by anemia, bone-marrow erythroblastopenia, and congenital anomalies and is associated with heterozygous mutations in the ribosomal protein (RP) S19 gene (RPS19) in approximately 25% of probands. We report identification of de novo nonsense and splice-site mutations in another RP, RPS24 (encoded by RPS24 [10q22-q23]) in approximately 2% of RPS19 mutation-negative probands. This finding strongly suggests that DBA is a disorder of ribosome synthesis and that mutations in other RP or associated genes that lead to disrupted ribosomal biogenesis and/or function may also cause DBA.  相似文献   
132.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.  相似文献   
133.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   
134.
135.
Mannan-binding lectin (MBL), ficolins and collectin-11 are known to associate with three homologous modular proteases, the MBL-Associated Serine Proteases (MASPs). The crystal structures of the catalytic domains of MASP-1 and MASP-2 have been solved, but the structure of the corresponding domain of MASP-3 remains unknown. A link between mutations in the MASP1/3 gene and the rare autosomal recessive 3MC (Mingarelli, Malpuech, Michels and Carnevale,) syndrome, characterized by various developmental disorders, was discovered recently, revealing an unexpected important role of MASP-3 in early developmental processes. To gain a first insight into the enzymatic and structural properties of MASP-3, a recombinant form of its serine protease (SP) domain was produced and characterized. The amidolytic activity of this domain on fluorescent peptidyl-aminomethylcoumarin substrates was shown to be considerably lower than that of other members of the C1r/C1s/MASP family. The E. coli protease inhibitor ecotin bound to the SP domains of MASP-3 and MASP-2, whereas no significant interaction was detected with MASP-1, C1r and C1s. A tetrameric complex comprising an ecotin dimer and two MASP-3 SP domains was isolated and its crystal structure was solved and refined to 3.2 Å. Analysis of the ecotin/MASP-3 interfaces allows a better understanding of the differential reactivity of the C1r/C1s/MASP protease family members towards ecotin, and comparison of the MASP-3 SP domain structure with those of other trypsin-like proteases yields novel hypotheses accounting for its zymogen-like properties in vitro.  相似文献   
136.
Highlights? Numb relocalizes from the cortex to sorting endosomes at cytokinesis ? Numb is not essential for the internalization of Notch and Sanpodo ? Numb inhibits the recycling of Notch and Sanpodo ? Recycling inhibition in one daughter cell imposes directionality to Notch signaling  相似文献   
137.
Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.  相似文献   
138.
Some nonpathogenic bacteria were found to have protective effects in mouse models of allergic and autoimmune diseases. These "probiotics" are thought to interact with dendritic cells during Ag presentation, at the initiation of adaptive immune responses. Many other myeloid cells are the effector cells of immune responses. They are responsible for inflammation that accounts for symptoms in allergic and autoimmune diseases. We investigated in this study whether probiotics might affect allergic and autoimmune inflammation by acting at the effector phase of adaptive immune responses. The effects of one strain of Lactobacillus casei were investigated in vivo on IgE-induced passive systemic anaphylaxis and IgG-induced passive arthritis, two murine models of acute allergic and autoimmune inflammation, respectively, which bypass the induction phase of immune responses, in vitro on IgE- and IgG-induced mouse mast cell activation and ex vivo on IgE-dependent human basophil activation. L. casei protected from anaphylaxis and arthritis, and inhibited mouse mast cell and human basophil activation. Inhibition required contact between mast cells and bacteria, was reversible, and selectively affected the Lyn/Syk/linker for activation of T cells pathway induced on engagement of IgE receptors, leading to decreased MAPK activation, Ca(2+) mobilization, degranulation, and cytokine secretion. Also, adoptive anaphylaxis induced on Ag challenge in mice injected with IgE-sensitized mast cells was abrogated in mice injected with IgE-sensitized mast cells exposed to bacteria. These results demonstrate that probiotics can influence the effector phase of adaptive immunity in allergic and autoimmune diseases. They might, therefore, prevent inflammation in patients who have already synthesized specific IgE or autoantibodies.  相似文献   
139.
A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.  相似文献   
140.
There is little information on the mechanisms responsible for muscle recovery following a catabolic condition. To address this point, we reloaded unweighted animals and investigated protein turnover during recovery from this highly catabolic state and the role of proteolysis in the reorganization of the soleus muscle. During early recovery (18 h of reloading) both muscle protein synthesis and breakdown were elevated (+65%, P<0.001 and +22%, P<0.05, respectively). However, only the activation of non-lysosomal and Ca(2+)-independent proteolysis was responsible for increased protein breakdown. Accordingly, mRNA levels for ubiquitin and 20S proteasome subunits C8 and C9 were markedly elevated (from +89 to +325%, P<0.03) and actively transcribed as shown by the analysis of polyribosomal profiles. In contrast, both cathepsin D and 14-kDa-ubiquitin conjugating enzyme E2 mRNA levels decreased, suggesting that the expression of such genes is an early marker of reversed muscle wasting. Following 7 days of reloading, protein synthesis was still elevated and there was no detectable change in protein breakdown rates. Accordingly, mRNA levels for all the proteolytic components tested were back to control values even though an accumulation of high molecular weight ubiquitin conjugates was still detectable. This suggests that soleus muscle remodeling was still going on. Taken together, our observations suggest that enhanced protein synthesis and breakdown are both necessary to recover from muscle atrophy and result in catch-up growth. The observed non-coordinate regulation of proteolytic systems is presumably required to target specific classes of substrates (atrophy-specific protein isoforms, damaged proteins) for replacement and/or elimination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号