首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   44篇
  2022年   4篇
  2021年   13篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   13篇
  2014年   6篇
  2013年   14篇
  2012年   21篇
  2011年   14篇
  2010年   14篇
  2009年   9篇
  2008年   15篇
  2007年   12篇
  2006年   12篇
  2005年   15篇
  2004年   15篇
  2003年   16篇
  2002年   15篇
  2001年   12篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   8篇
  1991年   5篇
  1990年   1篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有313条查询结果,搜索用时 406 毫秒
71.
We have completed whole-genome scans for quantitative trait loci (QTLs) associated with acute ethanol-induced activation in the six F2 intercrosses that can be formed from the C57BL/6J (B6), DBA/2J (D2) , BALB/cJ (C), and LP/J (LP) inbred strains. The goal was to test the hypothesis that given the relatively simple structure of the laboratory mouse genome, the same QTLs will be detected in multiple crosses which in turn will provide support for the strategy of multiple-cross mapping (MCM). QTLs with LOD scores greater than 4 were detected on Chrs 1, 2, 3, 8, 9, 13, 14, and 16. Only for the QTL on distal Chr 1 was there convincing evidence that the same or at least a very similar QTL was detected in multiple crosses. We also mapped the Chr 2 QTL directly in heterogeneous stock (HS) animals derived from the four inbred strains. At G19 the QTL was mapped to an approximately 3-Mbp interval and this interval was associated with a haplotype block with a largely biallelic structure: B6-L:C-D2. We conclude that mapping in HS animals not only provides significantly greater QTL resolution, at least in some cases it provides significantly more information about the QTL haplotype structure.  相似文献   
72.
73.
The extracellular calcium-sensing receptor (CaSR) is activated by divalent cations and might mediate some of the effects of strontium ranelate, a new drug for the prevention and treatment of post-menopausal osteoporosis. Here, we showed that the maximal effect of Sr(2+) was comparable to that observed for Ca(2+) for both the cloned rat CaSR expressed in Chinese hamster ovary [CHO(CaSR)] cells and the mouse CaSR constitutively expressed in AtT-20 cells as measured by the accumulation of [(3)H]inositol phosphates (IP) resulting from CaSR activation. Strontium ranelate also displayed comparable agonist activity for the CaSR in both cell lines. Sodium ranelate did not stimulate the IP response in CHO(CaSR) cells. The IP response resulting from activation of other G-protein-coupled receptors was potentiated by Sr(2+), suggesting that entry of Sr(2+) into the cells might influence phospholipase C activity. Modulation of the CaSR activity in bone cells by strontium ranelate may contribute to its reported antiosteoporotic effects.  相似文献   
74.
Mitogen-activated protein (MAP) kinases are stable enzymes that are mainly regulated by phosphorylation and subcellular targeting. Here we report that extracellular signal-regulated kinase 3 (ERK3), unlike other MAP kinases, is an unstable protein that is constitutively degraded in proliferating cells with a half-life of 30 min. The proteolysis of ERK3 is executed by the proteasome and requires ubiquitination of the protein. Contrary to other protein kinases, the catalytic activity of ERK3 is not responsible for its short half-life. Instead, analysis of ERK1/ERK3 chimeras revealed the presence of two destabilization regions (NDR1 and -2) in the N-terminal lobe of the ERK3 kinase domain that are both necessary and sufficient to target ERK3 and heterologous proteins for proteasomal degradation. To assess the physiological relevance of the rapid turnover of ERK3, we monitored the expression of the kinase in different cellular models of differentiation. We observed that ERK3 markedly accumulates during differentiation of PC12 and C2C12 cells into the neuronal and muscle lineage, respectively. The accumulation of ERK3 during myogenic differentiation is associated with the time-dependent stabilization of the protein. Terminal skeletal muscle differentiation is accompanied by cell cycle withdrawal. Interestingly, we found that expression of stabilized forms of ERK3 causes G(1) arrest in NIH 3T3 cells. We propose that ERK3 biological activity is regulated by its cellular abundance through the control of protein stability.  相似文献   
75.
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase family of serine/threonine kinases. Little is known on the regulation of ERK3 function. Here, we report that ERK3 is constitutively localized in the cytoplasmic and nuclear compartments. In contrast to other mitogen-activated protein kinases, the cellular distribution of ERK3 remains unchanged in response to common mitogenic or stress stimuli and is independent of the enzymatic activity or phosphorylation of the kinase. The cytoplasmic localization of ERK3 is directed by a CRM1-dependent nuclear export mechanism. Treatment of cells with leptomycin B causes the nuclear accumulation of ERK3 in a high percentage of cells. Moreover, ectopic expression of CRM1 promotes the cytoplasmic relocalization of ERK3, whereas overexpression of snurportin 1, which binds CRM1 with high affinity, inhibits the nuclear export of ERK3. We also show that CRM1 binds to ERK3 in vitro. Importantly, we show that enforced localization of ERK3 in the nucleus or cytoplasm markedly attenuates the ability of the kinase to induce cell cycle arrest in fibroblasts. Our results suggest that nucleocytoplasmic shuttling of ERK3 is required for its negative regulatory effect on cell cycle progression.  相似文献   
76.
Proteomic analysis of the mouse liver mitochondrial inner membrane   总被引:14,自引:0,他引:14  
Mitochondria play a crucial role in cellular homeostasis, which justifies the increasing interest in mapping the different components of these organelles. Here we have focused our study on the identification of proteins of the mitochondrial inner membrane (MIM). This membrane is of particular interest because, besides the well known components of the respiratory chain complexes, it contains several ion channels and many carrier proteins that certainly play a key role in mitochondrial function and, therefore, deserve to be identified at the molecular level. To achieve this goal we have used a novel approach combining the use of highly purified mouse liver mitochondrial inner membranes, extraction of membrane proteins with organic acid, and two-dimensional liquid chromatography coupled to tandem mass spectrometry. This procedure allowed us to identify 182 proteins that are involved in several biochemical processes, such as the electron transport machinery, the protein import machinery, protein synthesis, lipid metabolism, and ion or substrate transport. The full range of isoelectric point (3.9-12.5), molecular mass (6-527 kDa), and hydrophobicity values (up to 16 transmembrane predicted domains) were represented. In addition, of the 182 proteins found, 20 were unknown or had never previously been associated with the MIM. Overexpression of some of these proteins in mammalian cells confirmed their mitochondrial localization and resulted in severe remodeling of the mitochondrial network. This study provides the first proteome of the MIM and provides a basis for a more detailed study of the newly characterized proteins of this membrane.  相似文献   
77.
The ability to heal wounds is vital to all organisms. In mammalian tissues, alterations in intermediate filament (IF) gene expression represent an early reaction of cells surviving injury. We investigated the role of keratin IFs during the epithelialization of skin wounds using a keratin 6alpha and 6beta (K6alpha/K6beta)-null mouse model. In skin explant culture, null keratinocytes exhibit an enhanced epithelialization potential due to increased migration. The extent of the phenotype is strain dependent, and is accompanied by alterations in keratin IF and F-actin organization. However, in wounded skin in vivo, null keratinocytes rupture as they attempt to migrate under the blood clot. Fragility of the K6alpha/K6beta-null epidermis is confirmed when applying trauma to chemically treated skin. We propose that the alterations in IF gene expression after tissue injury foster a compromise between the need to display the cellular pliability necessary for timely migration and the requirement for resilience sufficient to withstand the rigors of a wound site.  相似文献   
78.
The abundance and cytoplasmic organization of keratin filaments enables them to contribute to the maintenance of structural integrity in epithelial tissues. Co-polymers of the type II keratin 8 and type I keratin 18 form the major intermediate filament network in simple epithelia. We investigated the mechanical properties of K8-K18 filament suspensions using rheological assays in conjunction with light and electron microscopy. Suspensions of K8-K18 filaments behave like a viscoelastic solid under standard assembly conditions. Bulk elasticity is weakly dependent on deformation frequency but is very sensitive to the concentration (G' approximately C1.5) and size of individual keratin polymers, in agreement with recent models of semiflexible-polymer physics. K8-K18 filaments can self-organize to form a bundled network that exhibits gel-like mechanical properties. In all cases the mechanical properties of the suspensions correlate with the structural features of individual polymers, as seen under light and electron microscopy. Importantly, these bulk viscoelastic properties of K8-K18 filaments are revealed only when interfacial elastic effects are minimized by the application of phospholipids at the air-liquid interface. Suspensions of K5-K14 and vimentin filaments also exhibit interfacial elasticity, which distorts the interpretation of the viscoelastic moduli as determined by standard rheometry. The potential for modulation of mechanical properties through self-organization may be a general property of keratin polymers and contribute to their organization and function in vivo.  相似文献   
79.
The effect of catecholamine depletion (induced by prior treatment with reserpine) was studied in Wistar rat ventricular myocytes using whole cell voltage-clamp methods. Two calcium-independent outward currents, the transient outward potassium current (I(to)) and the sustained outward potassium current (I(sus)), were measured. Reserpine treatment decreased tissue norepinephrine content by 97%. Action potential duration in the isolated perfused heart was significantly increased in reserpine-treated hearts. In isolated ventricular myocytes, I(to) density was decreased by 49% in reserpine-treated rats. This treatment had no effect on I(sus). The I(to) steady-state inactivation-voltage relationship and recovery from inactivation remained unchanged, whereas the conductance-voltage activation curve for reserpine-treated rats was significantly shifted (6.7 mV) toward negative potentials. The incubation of myocytes with 10 microM norepinephrine for 7-10 h restored I(to), an effect that was abolished by the presence of actinomycin D. Norepinephrine (0.5 microM) had no effect on I(to). However, in the presence of both 0.5 microM norepinephrine and neuropeptide Y (0.1 microM), I(to) density was restored to its control value. These results suggest that the sympathetic nervous system is involved in I(to) regulation. Sympathetic norepinephrine depletion decreased the number of functional channels via an effect on the alpha-adrenergic cascade and norepinephrine is able to restore expression of I(to) channels.  相似文献   
80.
Placoderm desmids (Conjugates, Chlorophyta) such as Closterium exhibit a gliding locomotory behavior. This results from the forceful extrusion of an acidic polysaccharide from one pole of the cell causing the cell to glide in the opposite direction. A biochemical and cytological analysis of gliding behavior was performed. The mucilage is a high molecular weight polysaccharide rich in glucuronic acid and fucose. Under normal growth conditions, 3 μg of mucilage is produced per cell in 30 days. Mucilage production increased 3–4 fold in cells challenged with low phosphate or nitrate conditions. A polyclonal antibody was raised against the mucilage and used in immunofluorescence studies. These results show that upon contact with another object Closterium aligns itself parallel to that object by a “jack-knife” motion. Subsequently, large amounts of mucilage are released to form elongate tubes enmeshing the cell with that object. In post-cytokinetic phases of the cell cycle, mucilage is extruded only through the pole of the developing semi-cell. Chlorotetracyclene-labeling of mucilage-secreting cells shows a correlation between calcium-rich loci on the cell surface and sites of mucilage release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号