首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   18篇
  国内免费   2篇
  178篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   18篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   15篇
  2007年   10篇
  2006年   27篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有178条查询结果,搜索用时 0 毫秒
171.
Biodiversity may regulate the temporal variability of ecological systems   总被引:1,自引:0,他引:1  
The effect of biodiversity on natural communities has recently emerged as a topic of considerable ecological interest. We review studies that explicitly test whether the number of species in a community (species richness) regulates the temporal variability of aggregate community (total biomass, productivity, nutrient cycling) and population (density, biomass) properties. Theoretical studies predict that community variability should decline with increasing species richness, while population variability should increase. Many, but not all, empirical studies support these expectations. However, a closer look reveals that several empirical studies have either imperfect experimental designs or biased methods of calculating variability. Furthermore, most theoretical studies rely on highly unrealistic assumptions. We conclude that evidence to support the claim that biodiversity regulates temporal variability is accumulating, but not unequivocal. More research, in a broader array of ecosystem types and with careful attention to methodological considerations, is needed before we can make definitive statements regarding richness‐variability relationships.  相似文献   
172.
173.
174.
175.
Ophrys orchids mimic the female sex pheromones of their pollinator species to attract males for pollination. Reproductive isolation in Ophrys is based on the selective attraction of only a single pollinator species. A change of floral odour can result in the attraction of a new pollinator species that acts as an isolation barrier towards other sympatrically occurring Ophrys species. Ophrys lupercalis, Ophrys bilunulata, and Ophrys fabrella grow sympatrically and bloom consecutively on Majorca and are pollinated by three species of Andrena. We investigated variation of phenotypic and genotypic flower traits, aiming to study the role of the floral odour for reproductive isolation and speciation. Using chemical and electrophysiology (gas chromatography coupled with an electroantennographic detector) methods, we show that the three Ophrys species use the same odour compounds for pollinator attraction, but in different proportions. A comparison of the floral odour bouquets in a multivariate analysis revealed a clear grouping of plants from the same species, although with an overlap between species. A comparison of the same plants using molecular markers gave a contrasting result. Although O. lupercalis and O. fabrella were genetically well separated, plants of O. bilunulata did not form a distinct group but were similar to either O. lupercalis or O. fabrella. Our data indicate gene flow and hybridization to occur between O. bilunulata and O. lupercalis as well as between O. bilunulata and O. fabrella. All plants of O. bilunulata, despite having different genotypes, showed a very similar floral odour. This reflects a strong selective pressure by the pollinating males. The overlap of genotypes of O. bilunulata and O. fabrella supports our hypothesis that O. fabrella diverged from O. bilunulata by scent variation and the attraction of a new pollinator species, Andrena fabrella. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 439–451.  相似文献   
176.
The effects of weekly injections of a gonadotropin-releasing hormone (GnRH) antagonist (GnRHa) ([N-acetyl-DβNal1-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8D-Ala10] NH2 GnRH) on pituitary and ovarian function were examined in the marmoset monkey, Callithrix jacchus. In experiment 1, five cyclic females were given weekly injections of vehicle (50% propylene glycol in saline) for 6 weeks followed by GnRHa for 20 weeks, animals receiving either 200 μg GnRHa/injection (n = 2) or 67 μg GnRHa/injection (n = 3) for 10 weeks, after which the treatment was reversed. Bioactive luteinizing hormone (LH) and progesterone (Po) were measured in blood samples (0.2–0.4 ml) collected twice weekly until at least 8 weeks after the last GnRHa injection. GnRHa treatment, timed to begin in the midluteal phase, caused a rapid decline in LH and Po and luteal regression after a single injection (both doses). Po levels were consistently low (<10 ng/ml), and ovulation was inhibited throughout 200 μg treatment in all animals. Short periods of elevated Po (>10 ng/ml) were, however, occasionally seen during 67 μg treatment, indicating incomplete ovarian suppression. Mean LH levels were significantly lower during GnRHa treatment compared with the period of vehicle injection (all animals 200 μg; three animals 67 μg), and there were significant differences in LH levels between GnRHa treatments (200 μg vs. 67 μg) in four animals. Four animals resumed normal ovarian cycles after the end of GnRHa treatment (15/16 days, three animals; 59 days, one animal); the fifth animal died of unknown causes 32 days after the last GnRHa injection. In a second experiment, pituitary responsiveness to exogenous GnRH was tested 1 day after a single injection of vehicle or antagonist (200 or 67 μg). Measurement of bioactive LH indicated that pituitary response to 200 ng native GnRH was significantly suppressed in animals receiving the antagonist, the degree of suppression being dose related. A third experiment examined the effect of four weekly injections of 200 μg GnRHa on follicular size and granulosa cell responsiveness to human follicle-stimulating hormone (hFSH) in vitro. Follicular development beyond 1 mm was inhibited by GnRHa treatment (preovulatory follicles normally 2-4 mm) although granulosa cell responsiveness to FSH during 48 hr of culture was not impaired. These results suggest that the GnRHa-induced suppression of follicular development and ovulation was mediated primarily by an inhibition of pituitary gonadotropin secretion and not by a direct action at the level of the ovary.  相似文献   
177.
178.
Bioactive compounds produced by cyanobacteria   总被引:7,自引:0,他引:7  
Cyanobacteria produce a large number of compounds with varying bioactivities. Prominent among these are toxins: hepatotoxins such as microcystins and nodularins and neurotoxins such as anatoxins and saxitoxins. Cytotoxicity to tumor cells has been demonstrated for other cyanobacterial products, including 9-deazaadenosine, dolastatin 13 and analogs. A number of compounds in cyanobacteria are inhibitors of proteases — micropeptins, cyanopeptolins, oscillapeptin, microviridin, aeruginosins- and other enzymes, while still other compounds have no recognized biological activities. In general cyclic peptides and depsipeptides are the most common structural types, but a wide variety of other types are also found: linear peptides, guanidines, phosphonates, purines and macrolides. The close similarity or identity in structures between cyanobacterial products and compounds isolated from sponges, tunicates and other marine invertebrates suggests the latter compounds may be derived from dietary or symbiotic blue-green algae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号