首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   10篇
  2021年   1篇
  2017年   2篇
  2015年   4篇
  2014年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1915年   1篇
  1903年   1篇
  1900年   1篇
排序方式: 共有87条查询结果,搜索用时 265 毫秒
41.
Systematics and taxonomy are essential: they respectively elucidate life's history, and organize and verify biological knowledge. This knowledge is built of interrelated concepts which are ultimately accounted for by biological specimens. Such knowledge is essential to decide how much and what biodiversity survives human onslaughts. The preservation of specimens in natural history collections is the essential part of the process which builds and maintains biological knowledge. These collections and the human expertise essential to interpret specimens are the taxonomic resources which maintain accurate and verifiable concepts of biological entities. Present and future knowledge of the complexities and diversity of the biosphere depends on the integrity of taxonomic resources, vet widespread ignorance and disregard for their fundamental value has created a global crisis. Preservation of specimens in natural history collections is chronically neglected and support to study and manage collections is very insufficient. The knowledge held by experienced taxonomists is not being passed on to younger recruits. Neglect of collections has destroyed countless specimens and threatens millions more. These threats to taxonomic resources not only impinge on systematics but all biology: this tragedy jeopardizes the integrity of biological knowledge. The consequences for environmental conservation and therefore humanity are also of dire severity and the biodiversity crisis adds unprecedented weight to the barely recognized crisis in taxonomy and systematics.Where correspondence should  相似文献   
42.
Neural networks provide a basis for semiempirical studies of pattern matching between the primary and secondary structures of proteins. Networks of the perceptron class have been trained to classify the amino-acid residues into two categories for each of three types of secondary feature: alpha-helix or not, beta-sheet or not, and random coil or not. The explicit prediction for the helices in rhodopsin is compared with both electron microscopy results and those of the Chou-Fasman method. A new measure of homology between proteins is provided by the network approach, which thereby leads to quantification of the differences between the primary structures of proteins.  相似文献   
43.
44.
BACKGROUND: The coordination of cell cycle events is necessary to ensure the proper duplication and dissemination of the genome. In this study, we examine the consequences of depleting Drad21 and SA, two non-SMC subunits of the cohesin complex, by dsRNA-mediated interference in Drosophila cultured cells.RESULTS: We have shown that a bona fide cohesin complex exists in Drosophila embryos. Strikingly, the Drad21/Scc1 and SA/Scc3 non-SMC subunits associate more intimately with one another than they do with the SMCs. We have observed defects in mitotic progression in cells from which Drad21 has been depleted: cells delay in prometaphase with normally condensed, but prematurely separated, sister chromatids and with abnormal spindle morphology. Much milder defects are observed when SA is depleted from cells. The dynamics of the chromosome passenger protein, INCENP, are affected after Drad21 depletion. We have also made the surprising observation that SA is unstable in the absence of Drad21; however, we have shown that the converse is not true. Interference with Drad21 in living Drosophila embryos also has deleterious effects on mitotic progression. CONCLUSIONS: We conclude that Drad21, as a member of a cohesin complex, is required in Drosophila cultured cells and embryos for proper mitotic progression. The protein is required in cultured cells for chromosome cohesion, spindle morphology, dynamics of a chromosome passenger protein, and stability of the cohesin complex, but apparently not for normal chromosome condensation. The observation of SA instability in the absence of Drad21 implies that the expression of cohesin subunits and assembly of the cohesin complex will be tightly regulated.  相似文献   
45.
A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment.  相似文献   
46.
The RecQ4 protein shows homology to both the S.cerevisiae DNA replication protein Sld2 and the DNA repair related RecQ helicases. Experimental data also suggest replication and repair functions for RecQ4, but the precise details of its involvement remain to be clarified.Here we show that depletion of DmRecQ4 by dsRNA interference in S2 cells causes defects consistent with a replication function for the protein. The cells show reduced proliferation associated with an S phase block, reduced BrdU incorporation, and an increase in cells with a subG1 DNA content. At the molecular level we observe reduced chromatin association of DNA polymerase-alpha and PCNA. We also observe increased chromatin association of phosphorylated H2AvD - consistent with the presence of DNA damage and increased apoptosis.Analysis of DmRecQ4 repair function suggests a direct role in NER, as the protein shows rapid but transient nuclear localisation after UV treatment. Re-localisation is not observed after etoposide or H2O2 treatment, indicating that the involvement of DmRecQ4 in repair is likely to be pathway specific.Deletion analysis of DmRecQ4 suggests that the SLD2 domain was essential, but not sufficient, for replication function. In addition a DmRecQ4 N-terminal deletion could efficiently re-localise on UV treatment, suggesting that the determinants for this response are contained in the C terminus of the protein. Finally several deletions show differential rescue of dsRNA generated replication and proliferation phenotypes. These will be useful for a molecular analysis of the specific role of DmRecQ4 in different cellular pathways.  相似文献   
47.
The improvement of pastures by the use of a range of herbicides to eliminate grasses, and their effect on populations of the take-all fungus (Gaeumannomyces graminis vartritici=Ggt) were studied in the field (at Esperance Downs, on the south-coast of Western Australia) from 1982 to 1985. Field trials were conducted to evaluate three herbicide treatments (2,4-D amine+propyzamide; 2,4-D amine+paraquat; paraquat/ diquat) and an unsprayed control. A pot trial involving these treatments with two levels of nitrogen was undertaken to confirm treatment effects observed in the field trial. All herbicide treatments resulted in reduced grass composition of pastures, in both the year of spraying and in the second year of pasture, but reduced dry matter production in the year of spraying. In the year of spraying, however, inoculum ofGgt was reduced (P<0.1) only following the 2,4-D amine+propyzamide treatment and was greater (P<0.1) after 2,4-D amine+paraquat treatment than the unsprayed treatment. Despite reduced grass levels in the herbicide-treated plots in the second year of pasture,Ggt inoculum did not differ between treatments, nor did it after a wheat crop which followed a second year pasture. There was high correlation (P<0.001) between disease levels and dry weights of grasses in the pot trial. There was significantly less (P<0.001) grass in pots treated with herbicides compared to the unsprayed control but no difference (P>0.05) was evident between treatments. Inoculum levels were lower (P<0.05) in the treated pots than the unsprayed control with no evidence of differences among treatments (P>0.05). Nitrogen level had no effect on disease (P>0.05). All herbicide treatments tested reduced grass level and total dry matter, both in the field and in pots. Whereas in the pot trial reduced grass levels resulted in reducedGgt inoculum, in the field such a reduction occurred only with the 2,4-D amine+propyzamide treatment and only in the year of spraying. Herbicide treatments had no effect onGgt inoculum in second year of pasture or crop. Unknown soil and environmental factors in the field precluded a simple relationship between grass level in pasture and subsequent level ofGgt inoculum, and where such a relationship did occur (2,4-D amine+propyzamide treatment) it appeared to be shortlived.  相似文献   
48.
49.
The MCM proteins are a group of six proteins whose action is vital for DNA replication in eukaryotes. It has been suggested that they constitute the replicative helicase, with a subset of the proteins forming the catalytic helicase (MCM4,6,7) while the others have a loading or control function. In this paper we show that all six MCM proteins are present in equivalent amounts in soluble extracts and on chromatin. We have also analysed soluble and chromatin-associated MCM protein complexes under different conditions. This suggests that all six MCM proteins are always found in a complex with each other, although the interaction between the individual MCM proteins is not equivalent as stringent salt conditions are able to break the intact complex into a number of stable subcomplexes. These data contribute to the ongoing debate about the nature of MCM complexes, supporting the hypothesis that they act as a heterohexamer rather than as a number of different subcomplexes. Finally, using protein–protein cross-linking we have shown that MCM2 interacts directly with MCM5 and MCM6; MCM5 with MCM3 and MCM2; and MCM6 with MCM2 and MCM4. This provides the first direct information about specific subunit contacts in the MCM complex.  相似文献   
50.
BACKGROUND: The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated beta-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. RESULTS: The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated beta-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. CONCLUSION: Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号