首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   7篇
  2012年   16篇
  2011年   13篇
  2010年   2篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   8篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1981年   1篇
  1974年   2篇
  1970年   1篇
排序方式: 共有138条查询结果,搜索用时 171 毫秒
91.
A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a different selectable marker (URA, TRP, or LEU), and the system provides high expression levels of three different proteins simultaneously. This system was integrated into the protocols on a fully automated plasmid-based robotic platform to screen engineered strains of S. cerevisiae for improved growth on xylose. First, a novel PCR assembly strategy was used to clone a xylose isomerase (XI) gene into the URA-selectable SUMO vector and the plasmid was placed into the S. cerevisiae INVSc1 strain to give the strain designated INVSc1-XI. Second, amino acid scanning mutagenesis was used to generate a library of mutagenized genes encoding the bioinsecticidal peptide lycotoxin-1 (Lyt-1) and the library was cloned into the TRP-selectable SUMO vector and placed into INVSc1-XI to give the strain designated INVSc1-XI-Lyt-1. Third, the Yersinia pestis xylulokinase gene was cloned into the LEU-selectable SUMO vector and placed into the INVSc1-XI-Lyt-1 yeast. Yeast strains expressing XI and xylulokinase with or without Lyt-1 showed improved growth on xylose compared to INVSc1-XI yeast.  相似文献   
92.
93.
Lactobacillus plantarum ferments glucose through the Embden–Meyerhof–Parnas pathway: the central metabolite pyruvate is converted into lactate via lactate dehydrogenase (LDH). By substituting LDH with pyruvate decarboxylase (PDC) activity, pyruvate may be redirected toward ethanol production instead of lactic acid fermentation. A PDC gene from the Gram-positive bacterium Sarcina ventriculi (Spdc) was introduced into an LDH-deficient strain, L. plantarum TF103, in which both the ldhL and ldhD genes were inactivated. Four different fusion genes between Spdc and either the S. ventriculi promoter or three Lactococcus lactis promoters in pTRKH2 were introduced into TF103. PDC activity was detected in all four recombinant strains. The engineered strains were examined for production of ethanol and other metabolites in flask fermentations. The recombinant strains grew slightly faster than the parent TF103 and produced 90–130 mM ethanol. Although slightly more ethanol was observed, carbon flow was not significantly improved toward ethanol, suggesting that a further understanding of this organism’s metabolism is necessary.  相似文献   
94.
Skatole (3-methylindole) is a malodorous chemical in stored swine manure and is implicated as a component of foul-tasting pork. Definitive evidence for the skatole pathway is lacking. Deuterium-labeled substrates were employed to resolve this pathway in the acetogenic bacterium Clostridium drakei and Clostridium scatologenes and to determine if a similar pathway is used by microorganisms present in stored swine manure. Indoleacetic acid (IAA) was synthesized from tryptophan by both bacteria, and skatole was synthesized from both IAA and tryptophan. Microorganisms in swine manure produced skatole and other oxidation products from tryptophan, but IAA yielded only skatole. A catabolic mechanism for the synthesis of skatole is proposed.  相似文献   
95.
Aims: To develop and evaluate primer sets targeted to the dissimilatory sulfite reductase gene (dsrA) for use in quantitative real‐time PCR detection of sulfate‐reducing bacteria (SRB) in stored swine manure. Methods and Results: Degenerate primer sets were developed to detect SRB in stored swine manure. These were compared with a previously reported primer set, DSR1F+ and DSR‐R, for their coverage and ability to detect SRB communities in stored swine manure. Sequenced clones were most similar to Desulfovibrio sp. and Desulfobulbus sp., and these SRB populations differed within different manure ecosystems. Sulfur content of swine diets was shown to affect the population of Desulfobulbus‐like Group 1 SRB in manure. Conclusions: The newly developed assays were able to enumerate and discern different groups of SRB, and suggest a richly diverse and as yet undescribed population of SRB in swine manure. Significance and Impact of the Study: The PCR assays described here provide improved and efficient molecular tools for quantitative detection of SRB populations. This is the first study to show population shifts of SRB in swine manure, which are a result of either the effects of swine diets or the maturity of the manure ecosystem.  相似文献   
96.
Biological pretreatment of lignocellulosic biomass by white‐rot fungus can represent a low‐cost and eco‐friendly alternative to harsh physical, chemical, or physico‐chemical pretreatment methods to facilitate enzymatic hydrolysis. In this work, solid‐state cultivation of corn stover with Phlebia brevispora NRRL‐13018 was optimized with respect to duration, moisture content and inoculum size. Changes in composition of pretreated corn stover and its susceptibility to enzymatic hydrolysis were analyzed. About 84% moisture and 42 days incubation at 28°C were found to be optimal for pretreatment with respect to enzymatic saccharification. Inoculum size had little effect compared to moisture level. Ergosterol data shows continued growth of the fungus studied up to 57 days. No furfural and hydroxymethyl furfural were produced. The total sugar yield was 442 ± 5 mg/g of pretreated corn stover. About 36 ± 0.6 g ethanol was produced from 150 g pretreated stover per L by fed‐batch simultaneous saccharification and fermentation (SSF) using mixed sugar utilizing ethanologenic recombinant Eschericia coli FBR5 strain. The ethanol yields were 32.0 ± 0.2 and 38.0 ± 0.2 g from 200 g pretreated corn stover per L by fed‐batch SSF using Saccharomyces cerevisiae D5A and xylose utilizing recombinant S. cerevisiae YRH400 strain, respectively. This research demonstrates that P. brevispora NRRL‐13018 has potential to be used for biological pretreatment of lignocellulosic biomass. This is the first report on the production of ethanol from P. brevispora pretreated corn stover. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:365–374, 2017  相似文献   
97.
Anaerobic bacteria resistant to the macrolide antibiotics tylosin and erythromycin were isolated from the feces of swine. One of the strains, 121B, was initially identified by 16S rDNA sequence analysis as an unknown Lactobacillus sp. The strain was found to contain at least two plasmids, one of which was capable of replicating and providing erythromycin and tylosin resistance to Bacillus subtilis, Streptococcus gordonii, and Escherichia coli. DNA sequence analyses of the 4,232-bp plasmid, p121BS, identified one open reading frame encoding a methylase gene highly similar (>98% amino acid identity, >99% DNA sequence identity) to the ermT gene from the Lactobacillus reuteri plasmid pGT633. This is only the second ermT gene to be reported. p121BS also contains two additional open reading frames with significant amino acid similarities to replication proteins from Lactobacillus and other Gram-positive bacteria. Received: 13 October 2000 / Accepted: 4 December 2000  相似文献   
98.
Ziemer CJ  Cotta MA  Whitehead TR 《Anaerobe》2004,10(4):217-227
Group specific amplified ribosomal-DNA restriction analysis was evaluated as a method to rapidly assess microbial community structure in swine fecal and manure storage pit samples. PCR primer sequences were evaluated for their specificity to ribosomal DNA from selected bacterial groups by optimizing annealing temperatures and determining specificity using a set of primer target and non-target organisms. A number of primer sets were identified targeting the following groups: Bacteroides-Prevotella, clostridial clusters I and II, clostridial clusters IX and XI, clostridial clusters XIVa and XIVb, Lactobacillus, Desulfovibrionaceae and Streptococcus-Lactococcus, as well as an universal primer set to represent total populations. Each bacterial group was digested with at least three restriction enzymes. We applied the group specific amplified ribosomal-DNA restriction analysis to swine fecal and manure storage pit samples obtained on two separate occasions. Fecal and manure storage pit samples obtained on the same day were more similar to each other than to any other samples. Results were consistent with 16S ribosomal DNA sequencing data from bacterial isolates and clones obtained from swine feces and manure storage pit. The group specific amplified ribosomal-DNA restriction analysis technique was able to rapid detect gross bacterial community differences among swine fecal and manure storage pit samples and determine groups of interest for more detailed examination.  相似文献   
99.
Three lignocellulosic substrate mixtures [liquid fraction of acid-catalyzed steam-exploded softwood, softwood spent sulfite liquor (SSL) and hardwood SSL] were separately fermented by the industrially employed SSL-adapted strain Tembec T1 and a natural galactose-assimilating isolate (Y-1528) of Saccharomyces cerevisiae to compare fermentative efficacy. Both strains were confirmed as S. cerevisiae via molecular genotyping. The performance of strain Y-1528 exceeded that of Tembec T1 on all three substrate mixtures, with complete hexose sugar consumption ranging from 10 to 18 h for Y-1528, vs 24 to 28 h for T1. Furthermore, Y-1528 consumed galactose prior to glucose and mannose, in contrast to Tembec T1, which exhibited catabolite repression of galactose metabolism. Ethanol yields were comparable regardless of the substrate utilized. Strains T1 and Y-1528 were also combined in mixed culture to determine the effects of integrating their distinct metabolic capabilities during defined hexose sugar and SSL fermentations. Sugar consumption in the defined mixture was accelerated, with complete exhaustion of hexose sugars occurring in just over 6 h. Galactose was consumed first, followed by glucose and mannose. Ethanol yields were slightly reduced relative to pure cultures of Y-1528, but normal growth kinetics was not impeded. Sugar consumption in the SSLs was also accelerated, with complete utilization of softwood- and hardwood-derived hexose sugars occurring in 6 and 8 h, respectively. Catabolite repression was absent in both SSL fermentations.  相似文献   
100.
The extracellular polysaccharide produced by Butyrivibrio fibrisolvens strain H10b, when grown under strictly anaerobic conditions with glucose as carbohydrate source, has been studied by chemical and spectroscopic techniques. The results demonstrate that the polysaccharide consists of hexasaccharide repeating units with the following structure: [structure: see text] The isolated polysaccharide was found to be approximately 65% acetylated at O-2 of the 3-O-[(S)-1-carboxyethyl]-beta-D-Glcp residue. The absolute configuration of the 1-carboxyethyl groups was determined by circular dichroism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号