首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   33篇
  533篇
  2022年   6篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   9篇
  2016年   11篇
  2015年   24篇
  2014年   22篇
  2013年   27篇
  2012年   44篇
  2011年   33篇
  2010年   17篇
  2009年   31篇
  2008年   36篇
  2007年   22篇
  2006年   25篇
  2005年   26篇
  2004年   26篇
  2003年   25篇
  2002年   15篇
  2001年   12篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   11篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   4篇
  1966年   1篇
  1964年   2篇
  1961年   1篇
排序方式: 共有533条查询结果,搜索用时 15 毫秒
41.
Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.  相似文献   
42.
43.
Protein co-evolution under structural and functional constraints necessitates the preservation of important interactions. Identifying functionally important regions poses many obstacles in protein engineering efforts. In this paper, we present a bioinformatics-inspired approach (residue correlation analysis, RCA) for predicting functionally important domains from protein family sequence data. RCA is comprised of two major steps: (i) identifying pairs of residue positions that mutate in a coordinated manner, and (ii) using these results to identify protein regions that interact with an uncommonly high number of other residues. We hypothesize that strongly correlated pairs result not only from contacting pairs, but also from residues that participate in conformational changes involved during catalysis or important interactions necessary for retaining functionality. The results show that highly mobile loops that assist in ligand association/dissociation tend to exhibit high correlation. RCA results exhibit good agreement with the findings of experimental and molecular dynamics studies for the three protein families that are analyzed: (i) DHFR (dihydrofolate reductase), (ii) cyclophilin, and (iii) formyl-transferase. Specifically, the specificity (percentage of correct predictions) in all three cases is substantially higher than those obtained by entropic measures or contacting residue pairs. In addition, we use our approach in a predictive fashion to identify important regions of a transmembrane amino acid transporter protein for which there is limited structural and functional information available.  相似文献   
44.
A simple molecular model for the thermodynamic behavior of non-polar solutes in water and in aqueous solutions of protein denaturants is presented. Three contributions are considered: (i) combinatorial arising from the mixing process, (ii) interactional characterizing the molecular interactions occurring in the mixture and (iii) a contribution originating from the structural changes occurring in the first shell of water molecules around the solute. The latter is modeled assuming that water molecules in contact with the solute are involved in a chemical equilibrium between two states. The model describes well the temperature and denaturant concentration dependences of the Gibbs energies of solution and transfer for benzene, toluene and alkanes in water and aqueous solutions of urea and guanidine hydrochloride. Model parameters are physically meaningful, allowing a discussion of the molecular interactions involved. A preferential solvation of the solute by the denaturant is found. However, the non-polar solute-denaturant interaction is not specific, i.e. leading to a distinct chemical entity. Urea and guanidine hydrochloride are non-polar solubilizing agents because their interactions with the solute are less unfavorable than those between water and the solute.  相似文献   
45.
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.  相似文献   
46.
47.
The effect of specific residues on the kinetic stability of two closely related triosephosphate isomerases (from Trypanosoma cruzi, TcTIM and Trypanosoma brucei, TbTIM) has been studied. Based on a comparison of their β‐turn occurrence, we engineered two chimerical enzymes where their super secondary β‐loop‐α motifs 2 ((βα)2) were swapped. Differential scanning calorimetry (DSC) experiments showed that the (βα)2 motif of TcTIM inserted into TbTIM (2Tc) increases the kinetic stability. On the other hand, the presence of the (βα)2 motif of TbTIM inserted into TcTIM (2Tb) gave a chimerical protein difficult to purify in soluble form and with a significantly reduced kinetic stability. The comparison of the contact maps of the (βα)2 of TbTIM and TcTIM showed differences in the contact pattern of residues 43 and 49. In TcTIM these residues are prolines, located at the N‐terminal of loop‐2 and the C‐terminal of α‐helix‐2. Twelve mutants were engineered involving residues 43 and 49 to study the effect over the unfolding activation energy barrier (EA). A systematic analysis of DSC data showed a large decrease on the EA of TcTIM (ΔEA ranging from 468 to 678 kJ/mol) when the single and double proline mutations are present. The relevance of Pro43 to the kinetic stability is also revealed by mutation S43P, which increased the free energy of the transition state of TbTIM by 17.7 kJ/mol. Overall, the results indicate that protein kinetic stability can be severely affected by punctual mutations, disturbing the complex network of interactions that, in concerted action, determine protein stability. Proteins 2017; 85:571–579. © 2016 Wiley Periodicals, Inc.  相似文献   
48.
Solvent conditions modulate the expression of the amyloidogenic potential of proteins. In this work the effect of pH on the fibrillogenic behavior and the conformational properties of 6aJL2, a model protein of the highly amyloidogenic variable light chain λ6a gene segment, was examined. Ordered aggregates showing the ultrastructural and spectroscopic properties observed in amyloid fibrils were formed in the 2.0–8.0?pH range. At pH <3.0 a drastic decrease in lag time and an increase in fibril formation rate were found. In the 4.0–8.0?pH range there was no spectroscopic evidence for significant conformational changes in the native state. Likewise, heat capacity measurements showed no evidence for residual structure in the unfolded state. However, at pH <3.0 stability is severely decreased and the protein suffers conformational changes as detected by circular dichroism, tryptophan and ANS fluorescence, as well as by NMR spectroscopy. Molecular dynamics simulations indicate that acid-induced conformational changes involve the exposure of the loop connecting strands E and F. These results are compatible with pH-induced changes in the NMR spectra. Overall, the results indicate that the mechanism involved in the acid-induced increase in the fibrillogenic potential of 6aJL2 is profoundly different to that observed in κ light chains, and is promoted by localized conformational changes in a region of the protein that was previously not known to be involved in acid-induced light chain fibril formation. The identification of this region opens the potential for the design of specific inhibitors.  相似文献   
49.
Molecular dimensions and molecular orbital calculations of the electronic structures of 56 substrates, inhibitors and inducers of the cytochromes P-448 and other families of the cytochromes P-450 are reported. Substrates of the cytochromes P-448 are shown to be planar molecules with relatively large values of area/depth2, and to have electronic structures with relatively low values for ΔE, the difference in energy between the frontier orbitals (E(LEMO) − E(HOMO)). Substrates of other families of the cytochromes P-450 are globular molecules, with relatively low values of area/depth2 and relatively high values of ΔE. Molecular orbital calculations of the active oxygen species, singlet oxygen and superoxy anion, have also been made. Singlet oxygen is a poor electron donor (low values of E(HOMO)) but a good electron acceptor (low values of E(LEMO)), whereas superoxy anion is a good electron donor and a poor electron acceptor. Cytochrome P-448 substrates, which are good electron donors, would preferentially accept singlet oxygen, a good electron acceptor; substrates of the other families of cytochrome P-450, which are less effective electron donors, would preferentially accept superoxy anion, a good electron donor, although substrates of both cytochromes P-448 and other P-450s may accept both species of active oxygen. Together with recent published evidence, these data provide a greater understanding of the mode of activation of oxygen by the various families of the cytochromes P-450, and to the insertion of active oxygen into the substrates. Mechanisms are proposed for the oxygenation of substrates, namely, epoxidation involving singlet oxygen and hydroxylation by superoxy anion. Finally, a detailed explanation of the cytochrome P-450 cycle is discussed, and mechanisms of the different types of oxidative metabolism are presented.  相似文献   
50.
The recent availability of the genome of Anopheles gambiae offers an extraordinary opportunity for comparative studies of the diversity of transposable elements (TEs) and their evolutionary dynamics between two related species, taking advantage of the existing information from Drosophila melanogaster. To this goal, we screened the genome of A. gambiae for elements belonging to the Ty3/gypsy group of long-terminal repeat (LTR) retrotransposons. The A. gambiae genome displays a rich diversity of LTR retrotransposons, clearly greater than D. melanogaster. We have characterized in detail 63 families, belonging to five of the nine main lineages of the Ty3/gypsy group. The Mag lineage is the most diverse and abundant, with more than 30 families. In sharp contrast with this finding, a single family belonging to this lineage has been found in D. melanogaster, here reported for the first time in the literature, most probably consisting of old inactive elements. The CsRn1 lineage is also abundant in A. gambiae but almost absent from D. melanogaster. Conversely, the Osvaldo lineage has been detected in Drosophila but not in Anopheles. Comparison of structural characteristics of different families led to the identification of several lineage-specific features such as the primer-binding site (PBS), the gag-pol translational recoding signal (TRS), which is extraordinarily diverse within the Ty3/gypsy retrotransposons of A. gambiae, or the presence/absence of specific amino acid motifs. Interestingly, some of these characteristics, although in general well conserved within lineages, may have evolved independently in particular branches of the phylogenetic tree. We also show evidence of recent activity for around 75% of the families. Nevertheless, almost all families contain a high proportion of degenerate members and solitary LTRs (solo LTRs), indicative of a lower turnover rate of retrotransposons belonging to the Ty3/gypsy group in A. gambiae than in D. melanogaster. Finally, we have detected significant overrepresentations of insertions on the X chromosome versus autosomes and of putatively active insertions on euchromatin versus heterochromatin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号