首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   5篇
  149篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   12篇
  2014年   6篇
  2013年   6篇
  2012年   11篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   13篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
91.
92.
Wide‐scale application of biochar to soil has been suggested as a mechanism to offset increases in CO2 emissions through the long‐term sequestration of a carbon rich and inert substance to the soil, but the implications of this for soil diversity and function remain to be determined. Biochar is capable of inducing changes in soil bacterial communities, but the exact impacts of its application are poorly understood. Using three European sites [UK SRC, short rotation coppice, French grassland (FR) and Italian SRF, short rotation forestry (IT)] treated with identical biochar applications, we undertook 16S and ITS amplicon DNA sequencing. In addition, we carried out assessments of community change over time and N and P mobilization in the UK. Significant changes in bacterial and community structure occurred due to treatment, although the nature of the changes varied by site. STAMP differential abundance analysis showed enrichment of Gemmatimonadete and Acidobacteria in UK biochar plots 1 year after application, whilst control plots exhibited enriched Gemmataceae, Isosphaeraceae and Koribacteraceae. Increased mobility of ammonium and phosphates was also detected after 1 year, coupled with a shift from acid to alkaline phosphomonoesterase activity, which may suggest an ecological and functional shift towards a more copiotrophic ecology. Italy also exhibited enrichments, in both the Proteobacteria (driven by an increase in the order Rhizobiales) and the Gemmatimonadetes. No significant change in the abundance of individual taxa was noted in FR, although a small significant change in unweighted UNIFRAC occurred, indicating variation in the identities of taxa present due to treatment. Fungal β diversity was affected by treatment in IT and FR, but was unaffected in UK samples. The effects of time and site were greater than that of biochar application in UK samples. Overall, this report gives a tantalizing view of the soil microbiome at several sites across Europe and suggests that although application of biochar has significant effects on microbial communities, these may be small compared with the highly variable soil microbiome that is found in different soils and changes with time.  相似文献   
93.
In previous papers, we observed that dendrimers of peptide mimotopes of the nicotinic receptor ligand site are strong antidotes against the lethality of the nicotinic receptor ligand alpha-bungarotoxin. Although their in vitro activity is identical to that of dendrimers, the corresponding monomeric peptide mimotopes are not effective in vivo. Because the higher in vivo efficiency of dendrimers could not in this case be related to polyvalent interaction, the stability to blood protease activity of monomeric versus tetrabranched dendrimeric mimotope peptides was compared here by incubating three different mimotopes with human plasma and serum. Unmodified peptides and cleaved sequences were followed by high pressure liquid chromatography and mass spectrometry. Tetrabranched peptides were shown to be much more stable in plasma and also in serum. To assess the notable stability of multimeric peptides, different bioactive neuropeptides, including enkephalins, neurotensin and nociceptin, were synthesized in monomeric and tetrabranched forms and incubated with human plasma and serum and with rat brain membrane extracts. All the tetrabranched neuropeptides fully retained biological activity and generally showed much greater stability to blood and brain protease activity. Some tetrabranched peptides were also resistant to trypsin and chymotrypsin. Our findings provide new insights into the possible therapeutic use of bioactive peptides.  相似文献   
94.
Fully fertile plants with the expected chromosome number 2n=40 were regenerated from excised leaf sections of Glycine clandestina. Shoots formed directly on the explants through organogenesis. Utilizing the same media and procedures fully fertile plants were also regenerated from cotyledon and hypocotyl tissue of the same G. clandestina accession. We were not successful in regenerating plants from root tissue of G. clandestina.Abbreviations 6-BA 6-Benzyladenine - FAA Formalin - NAA Naphthalenacetic acid - IAA Indoleacetic acid - Na2EDTA Disodium salt Ethylenediamine tetraacetic acid - Fe-NaEDTA Ferric-Sodium salt Ethylenediamine tetraacetic acid  相似文献   
95.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   
96.
97.
98.
The role of seed coats in seed viability   总被引:3,自引:0,他引:3  
The seed coat is the seed’s primary defense against adverse environmental conditions. A hard seed coat protects the seed not only from mechanical stress but also from microorganism invasion and from temperature and humidity fluctuations during storage. Phenolic compounds in the seed coat contribute to seed hardness and inhibition of microorganism growth. During germination, the seed coat protects the seed from hydration stress and electrolyte leakage.  相似文献   
99.
Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号