首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   42篇
  528篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   10篇
  2017年   7篇
  2016年   9篇
  2015年   16篇
  2014年   14篇
  2013年   33篇
  2012年   20篇
  2011年   28篇
  2010年   17篇
  2009年   19篇
  2008年   24篇
  2007年   26篇
  2006年   25篇
  2005年   21篇
  2004年   14篇
  2003年   22篇
  2002年   28篇
  2001年   13篇
  2000年   13篇
  1999年   17篇
  1998年   14篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1977年   6篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1970年   3篇
  1968年   4篇
  1951年   1篇
排序方式: 共有528条查询结果,搜索用时 15 毫秒
11.
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 – oppositely to ARF8 – directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far‐red light receptors PHYA/PHYB. In conclusion, different light qualities – sequentially perceived by specific photoreceptors – and the downstream COP1–HY5/HYH module finely tune auxin‐induced stamen elongation and thus male fertility.  相似文献   
12.
13.
14.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
15.
We present higher-order moment analysis of fluorescence intensity fluctuations from individual laser scanning microscopy images applied to study monomer-oligomer distributions. We demonstrate that the number densities and brightness ratios of a mixed population of monomers and oligomers can be determined by analyzing higher-order moments of the fluorescence intensity fluctuations from individual images for specific ranges of densities and particle brightness ratios. Computer simulations and experiments with fluorescent microspheres and cells were performed to illustrate the detection limits and accuracy of this statistical approach. The simulation results show that the concentration of the dimer or oligomer population should be less than or equal to the monomeric concentration for the method to provide accurate results, and that the upper density detection limit of the population of monomers is one order-of-magnitude higher than the concentration of the oligomers. We implemented this technique to resolve two populations of fluorescent microspheres with different brightness ratios and we also applied the moment-analysis method to examine the distribution of aggregation states of PDGF-beta receptors in human fibroblast cells. The method was able to resolve a tetrameric population of the PDGF-beta receptors relative to the background distribution of nonspecifically bound fluorophore.  相似文献   
16.
17.
18.
19.
The aim of this study was to evaluate in vivo whether nitric oxide (NO) is able to diffuse from blood into tissues and vice versa from tissues into blood. We used an in vivo model of intestinal ischemia (superior mesenteric artery occlusion) selectively increasing NO levels in intestinal tissue and an infusion of L-arginine selectively increasing NO levels in blood. In this model we followed formation of nitrosyl complexes of hemoglobin (Hb-NO) in blood and nitrosyl-diethyldithiocarbamate-iron complexes (DETC--Fe--NO) in ischemic intestine and normoxic tissues by means of electron paramagnetic resonance spectroscopy. NO trapping by DETC--Fe in the tissues resulted in a reduction of Hb--NO levels in blood accompanied by the formation of water-insoluble DETC--Fe-NO complexes in ischemic intestine and normoxic tissues both during ischemia and during reperfusion. Administration of L-arginine increased NO levels in blood but neither in ischemic intestine nor in normoxic tissue. Our data suggest that NO released in blood from endothelial cells does not diffuse into tissue. In contrast, NO formed in tissue diffuses into blood. The latter indicates that NO formed in tissues may exert its biological activities systematically.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号