首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2021篇
  免费   147篇
  2023年   4篇
  2022年   16篇
  2021年   46篇
  2020年   20篇
  2019年   33篇
  2018年   50篇
  2017年   45篇
  2016年   47篇
  2015年   69篇
  2014年   73篇
  2013年   152篇
  2012年   166篇
  2011年   169篇
  2010年   92篇
  2009年   94篇
  2008年   132篇
  2007年   151篇
  2006年   147篇
  2005年   139篇
  2004年   128篇
  2003年   112篇
  2002年   127篇
  2001年   33篇
  2000年   11篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   14篇
  1995年   10篇
  1994年   6篇
  1993年   8篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   6篇
  1979年   4篇
  1972年   1篇
  1969年   1篇
排序方式: 共有2168条查询结果,搜索用时 218 毫秒
81.
82.
Using high sensitivity fluorescence imaging with shutter speeds approximately 600,000 times faster than those of video frames, we have characterized Ca2+ waves within cells in exquisite detail to reveal Ca2+ signaling routes. Polarized neutrophils exhibited a counterclockwise rotating ryanodine-sensitive juxtamembrane Ca2+ wave during temporal calcium spikes. During stimulation with fMLP, a chemotactic factor, two Ca2+ waves traveling in opposite directions around the perimeter of the cell emanated from sites of stimulation (the clockwise wave is verapamil sensitive). Phagocytosed targets exhibit counterclockwise Ca2+ waves traveling about their periphery originating from the plasma membrane. This study: 1) outlines the technology to observe Ca2+ signaling circuitry within small living cells; 2) shows that extracellular spatial information in the form of a chemotactic factor gradient is transduced into intracellular chemical patterns, which provides fresh insights in signaling; 3) suggests that a line of communication exits between the cell surface and phagosomes; and 4) suggests that spatiotemporal Ca2+ patterns contribute to drug actions.  相似文献   
83.
Pyridine dinucleotides (NAD and NADP) are ubiquitous cofactors involved in hundreds of redox reactions essential for the energy transduction and metabolism in all living cells. In addition, NAD also serves as a substrate for ADP-ribosylation of a number of nuclear proteins, for silent information regulator 2 (Sir2)-like histone deacetylase that is involved in gene silencing regulation, and for cyclic ADP ribose (cADPR)-dependent Ca(2+) signaling. Pyridine nucleotide adenylyltransferase (PNAT) is an indispensable central enzyme in the NAD biosynthesis pathways catalyzing the condensation of pyridine mononucleotide (NMN or NaMN) with the AMP moiety of ATP to form NAD (or NaAD). Here we report the identification and structural characterization of a novel human PNAT (hsPNAT-3) that is located in the cytoplasm and mitochondria. Its subcellular localization and tissue distribution are distinct from the previously identified human nuclear PNAT-1 and PNAT-2. Detailed structural analysis of PNAT-3 in its apo form and in complex with its substrate(s) or product revealed the catalytic mechanism of the enzyme. The characterization of the cytosolic human PNAT-3 provided compelling evidence that the final steps of NAD biosynthesis pathways may exist in mammalian cytoplasm and mitochondria, potentially contributing to their NAD/NADP pool.  相似文献   
84.
85.
GPR54 is a G-protein-coupled receptor that displays a high percentage of identity in the transmembrane domains with the galanin receptors. The ligand for GPR54 has been identified as a peptide derived from the KiSS-1 gene. KiSS-1 has been shown to have anti-metastatic effects, suggesting that KiSS-1 or its receptor represents a potential therapeutic target. To further our understanding of the physiological function of this receptor, we have generated a mutant mouse line with a targeted disruption of the GPR54 receptor (GPR54 -/-). The analysis of the GPR54 mutant mice revealed developmental abnormalities of both male and female genitalia and histopathological changes in tissues which normally contain sexually dimorphic features. These data suggest a role for GPR54/KiSS-1 in normal sexual development, and indicate that study of the GPR54 mutant mice may provide valuable insights into human reproductive syndromes.  相似文献   
86.
At pH >7, proteorhodopsin functions as an outward-directed proton pump in cell membranes, and Asp-97 and Glu-108, the homologues of the Asp-85 and Asp-96 in bacteriorhodopsin, are the proton acceptor and donor to the retinal Schiff base, respectively. It was reported, however [Friedrich, T. et al. (2002) J. Mol. Biol., 321, 821-838], that proteorhodopsin transports protons also at pH <7 where Asp-97 is protonated and in the direction reverse from that at higher pH. To explore the roles of Asp-97 and Glu-108 in the proposed pumping with variable vectoriality, we compared the photocycles of D97N and E108Q mutants, and the effects of azide on the photocycle of the E108Q mutant, at low and high pH. Unlike at high pH, at a pH low enough to protonate Asp-97 neither the mutations nor the effects of azide revealed evidence for the participation of the acidic residues in proton transfer, and as in the photocycle of the wild-type protein, no intermediate with unprotonated Schiff base accumulated. In view of these findings, and the doubts raised by absence of charge transfer after flash excitation at low pH, we revisited the question whether transport occurs at all under these conditions. In both oriented membrane fragments and liposomes reconstituted with proteorhodopsin, we found transport at high pH but not at low pH. Instead, proton transport activity followed the titration curve for Asp-97, with an apparent pK(a) of 7.1, and became zero at the pH where Asp-97 is fully protonated.  相似文献   
87.
The aggregation and segregation of photosystems in higher plant thylakoid membranes as stromal cation-induced phenomena are studied by the Brownian dynamics method. A theoretical model of photosystems lateral movement within the membrane plane is developed, assuming their pairwise effective potential interaction in aqueous and lipid media and their diffusion. Along with the screened electrostatic repulsive interaction the model accounts for the van der Waals-type, elastic, and lipid-induced attractive forces between photosystems of different sizes and charges. Simulations with a priori estimated parameters demonstrate that all three studied repulsion-attraction alternatives might favor the local segregation of photosystems under physiologically reasonable conditions. However, only the lipid-induced potential combined with the size-corrected screened Coulomb interaction provides the segregated configurations with photosystems II localized in the central part of the grana-size simulation cell and photosystems I occupying its margins, as observed experimentally. Mapping of thermodynamic states reveals that the coexistence curves between isotropic and aggregated phases are the sigmoidlike functions regardless of the effective potential type. It correlates with measurements of the chlorophyll content of thylakoid fragments. Also the universality of the phase curves characterizes the aggregation and segregation of photosystems as order-disorder phase transitions with the Debye radius as a governing parameter.  相似文献   
88.
Homologous recombination is important for the repair of double-stranded DNA breaks in all organisms. Rad51 and Rad54 proteins are two key components of the homologous recombination machinery in eukaryotes. In vitro, Rad51 protein assembles with single-stranded DNA to form the helical nucleoprotein filament that promotes DNA strand exchange, a basic step of homologous recombination. Rad54 protein interacts with this Rad51 nucleoprotein filament and stimulates its DNA pairing activity, suggesting that Rad54 protein is a component of the nucleoprotein complex involved in the DNA homology search. Here, using physical criteria, we demonstrate directly the formation of Rad54-Rad51-DNA nucleoprotein co-complexes that contain equimolar amounts of each protein. The binding of Rad54 protein significantly stabilizes the Rad51 nucleoprotein filament formed on either single-stranded DNA or double-stranded DNA. The Rad54-stabilized nucleoprotein filament is more competent in DNA strand exchange and acts over a broader range of solution conditions. Thus, the co-assembly of an interacting partner with the Rad51 nucleoprotein filament represents a novel means of stabilizing the biochemical entity central to homologous recombination, and reveals a new function of Rad54 protein.  相似文献   
89.
90.
The spacer-armed trisaccharide, Neu5Gc-alpha-(2-->3')-lactosamine 3-aminopropyl glycoside, was synthesized by regio- and stereoselective sialylation of the suitably protected triol acceptor, 3-trifluoroacetamidopropyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(6-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside, with the donor methyl [phenyl 5-acetoxyacetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate. The donor was obtained, in turn, from methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-alpha,beta-D-galacto-2-nonulopyranosid]onate by N-tert-butoxycarbonylation of the acetamido group followed by total N- and O-deacetylation, per-O-acetylation, subsequent Boc group removal, and N-acetoxyacetylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号