首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   54篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   13篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   19篇
  2014年   18篇
  2013年   10篇
  2012年   14篇
  2011年   26篇
  2010年   10篇
  2009年   8篇
  2008年   9篇
  2007年   19篇
  2006年   21篇
  2005年   14篇
  2004年   8篇
  2003年   5篇
  2002年   11篇
  2001年   14篇
  2000年   13篇
  1999年   10篇
  1998年   12篇
  1997年   6篇
  1996年   6篇
  1995年   6篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   9篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   4篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
151.
Five different concentrations (100, 250, 500, 1000 and 2000 μg/L of aflatoxin B1 were found to be inhibitory to seed germination and seedling growth (root and shoot lengths) of mustard seeds (variety Pusa bold). These also lowered the levels of chlorophyll and carotenoids in the emerging leaves during seedling growth. The inhibitory effect was correlated with the concentration of applied toxin.  相似文献   
152.
The insulin receptor plays a vital role in mediating the actions of insulin. These include metabolic and mitogenic effects. This review will focus on the role of the insulin receptor isoforms in normal development and the pathogenesis of certain cancers and type 2 diabetes. There are two insulin receptor isoforms arising from the alternative splicing of exon 11 resulting in either the exon 11+ (IR-B) isoform (including 12 amino acids encoded by exon 11) or the exon 11- (IR-A) isoform. The isoforms have different affinities for insulin, IGF-II and IGF-I with the exon 11- isoform binding both insulin and IGF-II with high affinities. Interestingly, differential expression of the insulin receptor isoforms has been demonstrated in disease. Several cancer cell types that also overexpress IGF-II preferentially express the exon 11- isoform. Activation of the exon 11- insulin receptor by IGF-II and insulin results in mitogenic effects and a potentiation of the cancer phenotype. Also hyperinsulinemia has been associated with increased risk of cancer. Differential expression of the insulin receptor isoforms has also been demonstrated in type 2 diabetes although there is some discrepancy in the literature as to which isoform is expressed.  相似文献   
153.
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model’s mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose–cellulose interactions in forming a strong yet extensible network.

The ordered synthesis and bundling of cellulose microfibrils leads to a strong yet extensible surface network whose organization and physical properties are modulated by pliant matrix polysaccharides.  相似文献   
154.
155.
A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.  相似文献   
156.
Plant cell walls expand considerably during cell enlargement, but the biochemical reactions leading to wall expansion are unknown. McQueen-Mason et al. (1992, Plant Cell 4, 1425) recently identified two proteins from cucumber (Cucumis sativus L.) that induced extension in walls isolated from dicotyledons, but were relatively ineffective on grass coleoptile walls. Here we report the identification and partial characterization of an oat (Avena sativa L.) coleoptile wall protein with similar properties. The oat protein has an apparent molecular mass of 29 kDa as revealed by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Activity was optimal between pH 4.5 and 5.0, which makes it a suitable candidate for acid growth responses of plant cell walls. The oat protein induced extension in walls from oat coleoptiles, cucumber hypocotyls and pea (Pisum sativum L.) epicotyls and was specifically recognized by an antibody raised against the 29-kDa wall-extension-inducing protein from cucumber hypocotyls. Contrary to the situation in cucumber walls, the acid-extension response in heat-inactivated oat walls was only partially restored by oat or cucumber wall-extension proteins. Our results show that an antigenically conserved protein in the walls of cucumber and oat seedlings is able to mediate a form of acid-induced wall extension. This implies that dicotyledons and grasses share a common biochemical mechanism for at least part of acid-induced wall extensions, despite the significant differences in wall composition between these two classes of plants.Abbreviations ConA concanavalin A - CM carboxymethyl - DEAE diethylaminoethyl - DTT dithiothreitol - Ex29 29-kDa expansin  相似文献   
157.
Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.  相似文献   
158.
Solutes in the free space of growing stem tissues   总被引:24,自引:9,他引:15       下载免费PDF全文
The concentration of osmotically active solutes in the cell wall free space of young stem tissues was studied using a variety of extraction methods. When the intercellular air spaces of etiolated pea (Pisum sativum L.) internodes were perfused with distilled H2O, the resulting solution contained a solute concentration of about 70 milliosmoles per kilogram. A second procedure involving vacuum infiltration of segments followed by centrifugation to collect the free space solution gave similar results. Apical stem segments yielded free space extracts about twice as concentrated as those from basal portions of the stem. After correcting for dilution of the free space solution by the infiltrated water, the osmotic pressure of the undiluted free space in pea stem tissue was estimated to be 2.9 bars for apical segments, 1.8 bars for basal regions. These values may be somewhat overestimated due to solute efflux from intracellular pools during the extraction procedure. Similar results were obtained for stem regions of etiolated soybean (Glycine max [L.] Merr.) and cucumber (Cucumis sativus L.) seedlings.

From measurements of the electrical conductivity and refractive index of free space extracts before and after ashing, it appears that 25% of the solutes are inorganic electrolytes and 75% are organic nonelectrolytes with an average size similar to that of glucose.

A significant osmotic pressure in the wall space offers an explanation for the frequent observation that nontranspiring plants have negative water potentials. Calculations of hydraulic resistance from water potential data must take into account solutes in the free space, else `apparent,' but unreal, changes in resistance may be calculated.

  相似文献   
159.
The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 × 10−7 centimeters per second per bar down to 4.4 × 10−7 centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.  相似文献   
160.
Daniel J. Cosgrove 《Planta》1989,177(1):121-130
Walls from frozen-thawed cucumber (Cucumis sativus L.) hypocotyls extend for many hours when placed in tension under acidic conditions. This study examined whether such creep is a purely physical process dependent on wall viscoelasticity alone or whether enzymatic activities are needed to maintain wall extension. Chemical denaturants inhibited wall creep, some acting reversibly and others irreversibly. Brief (15 s) boiling in water irreversibly inhibited creep, as did pre-incubation with proteases. Creep exhibited a high Q10 (3.8) between 20° and 30°C, with slow inactivation at higher temperatures, whereas the viscous flow of pectin solutions exhibited a much lower Q10 (1.35). On the basis of its temperature sensitivity, involvement of pectic gel-sol transitions was judged to be of little importance in creep. Pre-incubation of walls in neutral pH irreversibly inactivated their ability to creep, with a half-time of about 40 min. At 1 mM, Cu2+, Hg2+ and Al3+ were strongly inhibitory whereas most other cations, including Ca2+, had little effect. Sulfhydryl-reducing agents strongly stimulated creep, apparently by stabilizing wall enzyme(s). The physical effects of these treatments on polymer interactions were examined by Instron and stress-relaxation analyses. Some treatments, such as pH and Cu2+, had significant effects on wall viscoelasticity, but others had little or no apparent effect, thus implicating an enzymatic creep mechanism. The results indicate that creep depends on relatively rugged enzymes that are firmly attached to or entangled in the wall. The sensitivity of creep to SH-reducing agents indicates that thiol reduction of wall enzymes might provide a control mechanism for endogenous cell growth.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethylether)-N,N,N,N-tetraacetic acid - Hepes N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号