首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   52篇
  2024年   2篇
  2023年   9篇
  2022年   11篇
  2021年   25篇
  2020年   21篇
  2019年   18篇
  2018年   30篇
  2017年   23篇
  2016年   28篇
  2015年   43篇
  2014年   54篇
  2013年   56篇
  2012年   56篇
  2011年   64篇
  2010年   41篇
  2009年   26篇
  2008年   30篇
  2007年   33篇
  2006年   23篇
  2005年   27篇
  2004年   35篇
  2003年   24篇
  2002年   19篇
  2001年   24篇
  2000年   18篇
  1999年   13篇
  1998年   9篇
  1997年   8篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   13篇
  1991年   2篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1969年   1篇
  1967年   1篇
  1963年   1篇
  1903年   1篇
排序方式: 共有853条查询结果,搜索用时 171 毫秒
121.
Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Ι) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at E m = +197 mV (heme c) and −4.5 mV (heme b). Variable-temperature (4–120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe–4S]+ cluster and overlapping signals associated with at least three types of [4Fe–4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called “low-pH” and “high-pH,” changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
122.
Molecular cues, such as netrin 1, guide axons by influencing growth cone motility. Rho GTPases are a family of intracellular proteins that regulate the cytoskeleton, substrate adhesion and vesicle trafficking. Activation of the RhoA subfamily of Rho GTPases is essential for chemorepellent axon guidance; however, their role during axonal chemoattraction is unclear. Here, we show that netrin 1, through its receptor DCC, inhibits RhoA in embryonic spinal commissural neurons. To determine whether netrin 1-mediated chemoattraction requires Rho function, we inhibited Rho signaling and assayed axon outgrowth and turning towards netrin 1. Additionally, we examined two important mechanisms that influence the guidance of axons to netrin 1: substrate adhesion and transport of the netrin receptor DCC to the plasma membrane. We found that inhibiting Rho signaling increased plasma membrane DCC and adhesion to substrate-bound netrin 1, and also enhanced netrin 1-mediated axon outgrowth and chemoattractive axon turning. Conversely, overexpression of RhoA or constitutively active RhoA inhibited axonal responses to netrin 1. These findings provide evidence that Rho signaling reduces axonal chemoattraction to netrin 1 by limiting the amount of plasma membrane DCC at the growth cone, and suggest that netrin 1-mediated inhibition of RhoA activates a positive-feedback mechanism that facilitates chemoattraction to netrin 1. Notably, these findings also have relevance for CNS regeneration research. Inhibiting RhoA promotes axon regeneration by disrupting inhibitory responses to myelin and the glial scar. By contrast, we demonstrate that axon chemoattraction to netrin 1 is not only maintained but enhanced, suggesting that this might facilitate directing regenerating axons to appropriate targets.  相似文献   
123.
124.
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.  相似文献   
125.
To identify those residues involved in fructose 6-phosphate binding to the kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase site-directed mutations were engineered at Lys194, Arg195, Arg230, and Arg238. The mutant enzymes were purified to homogeneity by anion exchange and Blue-Sepharose chromatography and/or substrate elution from phosphocellulose columns. Circular dichroism experiments demonstrated that all of the single amino acid mutations had no effect on the secondary structure of the protein. In addition, when fructose-2,6-bisphosphatase activity was measured, all mutants had Km values for fructose 2,6-bisphosphate, Ki values for fructose 6-phosphate, and maximal velocities similar to that of the wild-type enzyme. Mutation of Arg195----Ala, or His, had little or no effect on the maximal velocity of the kinase but increased the Km for fructose 6-phosphate greater than 3,000-fold. Furthermore, the Ka for phosphate for Arg195Ala was increased 100-fold compared with the wild-type enzyme. Mutation of Lys194----Ala had no effect on maximal velocity or the Km for fructose 6-phosphate. Mutation of either Arg230 or Arg238----Ala increased the maximal velocity and the Km for fructose-6 phosphate of the kinase by 2-3-fold but had no effect on fructose-2,6-bisphosphatase. However, the Km values for ATP of the Arg230Ala and Arg238Ala mutants were 30-40-fold higher than that for the wild-type enzyme. Mutation of Gly48----Ala resulted in a form with no kinase activity, but fructose-2,6-bisphosphatase activity was identical to that of the wild-type enzyme. The results indicate that: 1) Arg195 is a critical residue for the binding of fructose 6-phosphate to the 6-phospho-fructo-2-kinase domain, and that interaction of the sugar phosphate with Arg195 is highly specific since mutation of the adjacent Lys194----Ala had no effect on fructose 6-phosphate binding; 2) Arg195 also play an important role in the binding of inorganic phosphate; and 3) Gly48 is an important residue in the nucleotide binding fold of 6-phosphofructo-2-kinase and that both Arg230 and Arg238 are also involved in ATP binding; and 4) the bifunctional enzyme has two separate and independent fructose 6-phosphate binding sites.  相似文献   
126.
The four-stranded i-motif (iM) conformation of cytosine-rich DNA has importance to a wide variety of biochemical systems that range from their use in nanomaterials to potential roles in oncogene regulation. The iM structure is formed at slightly acidic pH, where hemiprotonation of cytosine results in a stable C-C+ basepair. Here, we performed fundamental studies to examine iM formation from a C-rich strand from the promoter of the human c-MYC gene. We used a number of biophysical techniques to characterize both the hydrodynamic properties and folding kinetics of a folded iM. Our hydrodynamic studies using fluorescence anisotropy decay and analytical ultracentrifugation show that the iM structure has a compact size in solution and displays the rigidity of a double strand. By studying the rates of circular dichroism spectral changes and quenching of fluorescent cytidine analogs, we also established a mechanism for the folding of a random coil oligo into the iM. In the course of determining this folding pathway, we established that the fluorescent dC analogs tC° and PdC can be used to monitor individual residues of an iM structure and to determine the pKa of an iM. We established that the C-C+ hydrogen bonding of certain bases initiates the folding of the iM structure. We also showed that substitutions in the loop regions of iMs give a distinctly different kinetic signature during folding compared with bases that are intercalated. Our data reveal that the iM passes through a distinct intermediate form between the unfolded and folded forms. Taken together, our results lay the foundation for using fluorescent dC analogs to follow structural changes during iM formation. Our technique may also be useful for examining folding and structural changes in more complex iMs.  相似文献   
127.
128.
Abstract The nucleotide sequence of a gene coding for a 37 kDa subunit of a cytosolic malate dehydrogenase of Trichomonas vaginalis was established. The sequences of a gDNA clone and a cDNA clone, which lacked seven amino-terminal codons, were identical, indicating an absence of introns from the gene. Cell fractionation combined with sequencing of peptide fragments of the purified enzyme showed that the gene codes for an expressed cytosolic enzyme. The derived amino acid sequence was closely related to cytosolic malate dehydrogenases from animals and plants and from the eubacteria Thermus aquaticus and Mycobacterium leprae and was more distant from the enzyme of mitochondria and from Escherichia coli and certain other eubacteria. In phylogenetic reconstructions this enzyme shared a most recent common ancestor with other cytosolic enzymes.  相似文献   
129.
Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L?1 to 8 mg L?1) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. ‘Jordão’ when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L?1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L?1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L?1 of Fe and/or 8 mg L?1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L?1 Fe?+?2 mg L?1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号