首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   16篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   12篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   8篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有194条查询结果,搜索用时 406 毫秒
11.
Ducks and seabirds are natural hosts for influenza A viruses (IAV). On oceanic islands, the ecology of IAV could be affected by the relative diversity, abundance and density of seabirds and ducks. Seabirds are the most abundant and widespread avifauna in the Western Indian Ocean and, in this region, oceanic islands represent major breeding sites for a large diversity of potential IAV host species. Based on serological assays, we assessed the host range of IAV and the virus subtype diversity in terns of the islands of the Western Indian Ocean. We further investigated the spatial variation in virus transmission patterns between islands and identified the origin of circulating viruses using a molecular approach. Our findings indicate that terns represent a major host for IAV on oceanic islands, not only for seabird-related virus subtypes such as H16, but also for those commonly isolated in wild and domestic ducks (H3, H6, H9, H12 subtypes). We also identified strong species-associated variation in virus exposure that may be associated to differences in the ecology and behaviour of terns. We discuss the role of tern migrations in the spread of viruses to and between oceanic islands, in particular for the H2 and H9 IAV subtypes.  相似文献   
12.
13.
Virulent strains of Bacillus anthracis produce immunomodulating toxins and an antiphagocytic capsule. The toxin component-protective Ag is a key target of the antianthrax immune response that induces production of toxin-neutralizing Abs. Coimmunization with spores enhances the antitoxin vaccine, and inactivated spores alone confer measurable protection. We aimed to identify the mechanisms of protection induced in inactivated-spore immunized mice that function independently of the toxin/antitoxin vaccine system. This goal was addressed with humoral and CD4 T lymphocyte transfer, in vivo depletion of CD4 T lymphocytes and IFN-gamma, and Ab-deficient (muMT(-/-)) or IFN-gamma-insensitive (IFN-gammaR(-/-)) mice. We found that humoral immunity did not protect from nontoxinogenic capsulated bacteria, whereas a cellular immune response by IFN-gamma-producing CD4 T lymphocytes protected mice. These results are the first evidence of protective cellular immunity against capsulated B. anthracis and suggest that future antianthrax vaccines should strive to augment cellular adaptive immunity.  相似文献   
14.
The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST) ) would be similar to that of neutral molecular differentiation (F(ST) ). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST) ) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species.  相似文献   
15.
16.
Le Corre V 《Molecular ecology》2005,14(13):4181-4192
Flowering Locus C (FLC) and Frigida are two interacting genes controlling flowering time variation in Arabidopsis thaliana. Variation at these genes was surveyed in 12 A. thaliana populations sampled in France. These populations were also screened for variation at molecular markers [12 microsatellites and 19 cleaved amplified polymorphic sequence (CAPS) markers] and at seven quantitative traits measured with and without vernalization. Seven populations were highly polymorphic at markers (H(S) = 0.57 at microsatellites, 0.24 at CAPS) and showed heritable variation for bolting time and some other traits. Five populations were genetically fixed or nearly fixed. Q(ST) for bolting time without vernalization was significantly higher than F(ST), suggesting local divergent selection. One of the two haplotype groups at FLC (FLC(A)) was very predominant (frequency of 99%). The first exon of Frigida showed elevated nonsynonymous variation, and nine loss-of-function mutations were found throughout the gene. The association between loss-of-function and earlier bolting was confirmed. Overall, 18 Frigida haplotypes were detected. The pattern of variation at Frigida was largely similar to that found at markers and traits, with the same populations being fixed or highly diverse. Metapopulation dynamics is thus probably the main factor shaping genetic variation in A. thaliana. However, F(ST) for functional (FRI) vs. nonfunctional (FRI(Delta)) haplotypes was significantly higher than F(ST) at markers. This suggested that loss-of-function at Frigida is under local selection for flowering time.  相似文献   
17.
18.
Adipose tissue is now considered as an endocrine organ implicated in energy regulation, inflammation and immune response, and as a source of multipotent cells with a broad range of differentiation capacities. Some of these cells are of a mesenchymal type which can -- like their bone marrow (BM) counterpart -- support hematopoiesis, since in a previous study we were able to reconstitute lethally irradiated mice by cells isolated from adipose tissue. In the present study, we established that cells derived from the stroma-vascular fraction of human subcutaneous fat pads support the complete differentiation of hematopoietic progenitors into myeloid and B lymphoid cells. However, these cells are unable to maintain the survival and self-renewal of hematopoietic stem cells. These features, similar to those of BM adipocytes, are the opposite of those of other cell types derived from mesenchymal progenitors such as BM myofibroblasts or osteoblasts. Because it is abundant and accessible, adipose tissue could be a convenient source of cells for the short-term reconstitution of hematopoiesis in man.  相似文献   
19.
Atmospheric nitrogen (N) deposition is rapidly increasing in tropical regions. We investigated how a decade of experimental N addition (125 kg N ha?1 year?1) to a seasonal lowland forest affected depth distribution and contents of soil nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), as well as natural abundance isotopic signatures of N2O, nitrate (NO3 ?) and ammonium (NH4 +). In the control plots during dry season, we deduced limited N2O production by denitrification in the topsoil (0.05–0.40 m) as indicated by: ambient N2O concentrations and ambient 15N-N2O signatures, low water-filled pore space (35–60%), and similar 15N signatures of N2O and NO3 ?. In the subsoil (0.40–2.00 m), we detected evidence of N2O reduction to N2 during upward diffusion, indicating denitrification activity. During wet season, we found that N2O at 0.05–2.00 m was mainly produced by denitrification with substantial further reduction to N2, as indicated by: lighter 15N-N2O than 15N-NO3 ? throughout the profile, and increasing N2O concentrations with simultaneously decreasing 15N-N2O enrichment with depth. These interpretations were supported by an isotopomer map and by a positive correlation between 18O-N2O and 15N-N2O site preferences. Long-term N addition did not affect dry-season soil N2O-N contents, doubled wet-season soil N2O-N contents, did not affect 15N signatures of NO3 ?, and reduced wet-season 15N signatures of N2O compared to the control plots. These suggest that the increased NO3 ? concentrations have stimulated N2O production and decreased N2O-to-N2 reduction. Soil CO2-C contents did not differ between treatments, implying that N addition essentially did not influence soil C cycling. The pronounced seasonality in soil respiration was largely attributable to enhanced topsoil respiration as indicated by a wet-season increase in the topsoil CO2-C contents. The N-addition plots showed reduced dry-season soil CH4-C contents and threshold CH4 concentrations were reached at a shallower depth compared to the control plots, revealing an N-induced stimulation of methanotrophic activity. However, the net soil CH4 uptake rates remained similar between treatments possibly because diffusive CH4 supply from the atmosphere largely limited CH4 oxidation.  相似文献   
20.
Most adaptive traits are controlled by large number of genes that may all together be the targets of selection. Adaptation may thus involve multiple but not necessarily substantial allele frequency changes. This has important consequences for the detection of selected loci and implies that a quantitative genetics framework may be more appropriate than the classical 'selective sweep' paradigm. Preferred methods to detect loci involved in local adaptation are based on the detection of 'outlier' values of the allelic differentiation F(ST) . A quantitative genetics framework is adopted here to review theoretical expectations for how allelic differentiation at quantitative trait loci (F(STQ) ) relates to (i), neutral genetic differentiation (F(ST) ) and (ii), phenotypic differentiation (Q(ST) ). We identify cases where results of outlier-based methods are likely to be poor and where differentiation at selected loci conveys little information regarding local adaptation. A first case is when neutral differentiation is high, so that local adaptation does not necessitate increased differentiation. A second case is when local adaptation is reached via an increased covariance of allelic effects rather than via allele frequency changes, which is more likely under high gene flow when the number of loci is high and selection is recent. The comparison of theoretical predictions with observed data from the literature suggests that polygenic local adaptation involving only faint allele frequency changes are very likely in some species such as forest trees and for climate-related traits. Recent methodological improvements that may alleviate the weakness of F(ST) -based detection methods are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号