首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   5篇
  2022年   1篇
  2021年   8篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   7篇
  2014年   4篇
  2013年   10篇
  2012年   12篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   13篇
  2007年   14篇
  2006年   13篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有159条查询结果,搜索用时 171 毫秒
151.
The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature’s approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware–software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial–temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.  相似文献   
152.
A water-soluble polysaccharide was extracted with alkali from the cell wall of Verticillium lecanii (also called Lecanicillium lecanii). After freezing and thawing, the water-soluble fraction was purified by gel filtration chromatography on Sepharose CL-6B and eluted as one peak by HPSEC/RID. Monosaccharide analysis showed galactose and glucose (1.1:1), with traces of mannose (<1%). The structural characteristics were determined by spectroscopic analysis, FT-IR and 1D and 2D 1H and 13C NMR, and methylation results. On the basis of the data obtained, the following structure of the polysaccharide (E3SIV fraction) was established:  相似文献   
153.
We report the genome sequence of a healthcare-associated MRSA type ST239 clone isolated from a patient with septicemia in Malaysia. This clone typifies the characteristics of ST239 lineage, including resistance to multiple antibiotics and antiseptics.  相似文献   
154.
Cholecystokinin (CCK) belongs to the group of substances known as brain-gut peptides: it functions both as a neuropeptide and a gut hormone. The peptide and its synthetic derivatives (like for instance CCK-8 and the amphibian counterpart caerulein) significantly delay emptying of gastric contents in both animals and humans. The fact that CCK, in doses mimicking postprandial plasma levels, strongly affects emptying rate suggests the peptide to be a physiologic regulator of gastric emptying. Unfortunately, clear definition of the role of CCK in the physiology of gastric motor activity has long been hampered by the lack of specific and potent non-peptide antagonists of CCK-receptors. The availability of such compounds has stimulated a broad array of investigations into the physiological actions of this hormone and examination of its putative role in certain diseases. This paper summarizes the available data concerning the effect of CCK and its antagonists on gastric emptying. The use of selective CCK-antagonists has allowed to establish that the gastric motor effect of the peptide is direct and mediated through the stimulation of CCK-A receptors. As a consequence, CCK-A antagonism results in acceleration of emptying rate under certain experimental and clinical conditions. This peculiar pharmacologic effect of CCK-A antagonists, which could be useful in the treatment of functional dyspepsia (idiopathic or diabetic), gastroparesis and gastro-esophageal reflux disease (where patients often display a delayed emptying rate of solid food) needs to be further investigated, in order to fully explore their potential as gastrokinetic drugs.  相似文献   
155.
156.
The 5-HT3A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (>0.1 μM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10′ contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action.  相似文献   
157.
A number of volatile organic compounds (VOCs) have been identified and used in preliminary clinical studies of the early diagnosis of lung cancer. The aim of this study was to evaluate the potential of aldehydes (known biomarkers of oxidative stress) in the diagnosis of patients with non-small cell lung cancer (NSCLC). We used an on-fiber-derivatisation SPME sampling technique coupled with GC/MS analysis to measure straight aldehydes C3–C9 in exhaled breath. Linearity was established over two orders of magnitude (range: 3.3–333.3 × 10−12 M); the LOD and LOQ of all the aldehydes were respectively 1 × 10−12 M and 3 × 10−12 M. Accuracy was within 93% and precision calculated as % RSD was 7.2–15.1%. Aldehyde stability in a Bio-VOC® tube stored at +4 °C was 10–17 h, but this became >10 days using a specific fiber storage device. Finally, exhaled aldehydes were measured in 38 asymptomatic non-smokers (controls) and 40 NSCLC patients. The levels of all of the aldehydes were increased in the NSCLC patients without any significant effect of smoking habits and little effect of age. The good discriminant power of the aldehyde pattern (90%) was confirmed by multivariate analysis. These results show that straight aldehydes may be promising biomarkers associated with NSCLC, and increase the sensitivity and specificity of previously identified VOC patterns.  相似文献   
158.
Halpern  M; Shapiro  LS; Jia  C 《Chemical senses》1998,23(4):477-481
The mammalian accessory olfactory bulb (AOB) is chemoarchitecturally heterogeneous in that it stains differentially with a number of markers; the receptor cells that project to the AOB are similarly heterogeneous. What is the significance of this heterogeneity? We have found that the AOB of the gray, short-tailed opossum, Monodelphis domestica, stains differentially with a number of 'markers': antibodies to olfactory marker protein (OMP) and the alpha subunit of the G protein Gi2, the lectin of Vicia villosa and NADPH-diaphorase. These markers stain the rostral AOB more strongly than the caudal AOB whereas, the G protein subunit G(o) alpha is located predominantly in the posterior subdivision of the AOB. This heterogeneity in the chemoarchitecture of the AOB may reflect a fundamental organizational dichotomy within the vomeronasal system that corresponds to a functional dichotomy. The vomeronasal sensory epithelium also exhibits a chemoarchitectural heterogeneity: receptor cells in the basal third are G(o) alpha-immunoreactive whereas the cells in the middle third are Gi2 alpha-immunoreactive. Tracing studies using WGA-HRP demonstrate that the neurons in the middle third of the vomeronasal sensory epithelium project their axons to the anterior AOB whereas those in the basal third appear to project to the posterior AOB.   相似文献   
159.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号