首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   30篇
  国内免费   1篇
  257篇
  2023年   4篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2017年   2篇
  2016年   6篇
  2015年   10篇
  2014年   11篇
  2013年   12篇
  2012年   6篇
  2011年   9篇
  2010年   3篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  1999年   6篇
  1998年   6篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1981年   9篇
  1979年   5篇
  1978年   10篇
  1977年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
71.
The protocols described here are comprehensive instructions for deriving human embryonic stem (hES) cell lines in xeno-free conditions from cryopreserved embryos. Details are included for propagation, cryopreservation and characterization. Initial derivation is on feeder cells and is followed by adaptation to a feeder-free environment; competent technicians can perform these simplified methods easily. From derivation to cryopreservation of fully characterized initial stocks takes 3-4 months. These protocols served as the basis for standard operating procedures (SOPs), with both operational and technical components, that we set to meet good manufacturing practice (GMP) and UK regulatory body requirements for derivation of clinical-grade cells. As such, these SOPs are currently used in our current GMP compliant facility to derive hES cell lines ab initio, in an animal product-free environment; these lines are suitable for research and potentially for clinical use in cell therapy. So far, we have derived eight clinical-grade lines, which will be freely available to the scientific community after submission/accession to the UK Stem Cell Bank.  相似文献   
72.
The ref(2)P locus (2-54.2) is polymorphic for two allelic forms in natural populations of Drosophila melanogaster, ref(2)Po and ref(2)Pp. The latter allele confers resistance to the rhabdovirus sigma infecting wild populations. Previous work, based on a small sample of prescreened restrictive (resistant) and permissive (susceptible) alleles, identified a large number of amino acid replacement changes (7) relative to synonymous changes (1). Such protein variability could be the result of variation-enhancing selection. To further test the selection hypothesis, we have examined the DNA sequences of ten randomly chosen lines of D. melanogaster and one line of D. simulans. Nine of the ten lines are permissive; D. simulans does not harbor the virus. The melanogaster alleles contain 4 synonymous changes, 19 noncoding changes, and 13 amino acid replacement changes, indicating a relatively high level of polymorphism. Three sequenced restrictive alleles have nearly identical sequences, indicating that they are relatively young. Compared to the permissive alleles, they share only a complex deletion at codon 34, CAG-AAT to GGA, which our analysis indicates to be the site conferring the restrictive phenotype. Patterns of polymorphism and divergence differ from neutral predictions by several criteria for the amino terminal region, which contains the complex deletion (codons 1-91), but not the remainder of the protein (codons 92-599). We find a higher rate of evolution on the D. melanogaster lineage than on the D. simulans lineage. The relatively large amount of both replacement and silent polymorphism in the permissive alleles and the lack of divergence between permissive and restrictive alleles suggests that the sigma virus and ref(2)P may be engaged in an evolutionary race in which new restrictive alleles are continually arising but are relatively short-lived.   相似文献   
73.
Considerable interest has been focused on the role of myosin light chain LC(2) in the contraction of vertebrate striated muscle. A study was undertaken to further our investigations (Moss, R.L., G.G. Giulian, and M.L. Greaser, 1981, J. Biol. Chem., 257:8588-8591) of the effects of LC(2) removal upon contraction in skinned fibers from rabbit psoas muscles. Isometric tension and maximum velocity of shortening, V(max), were measured in fiber segments prior to LC(2) removal. The segments were then bathed at 30 degrees C for up to 240 min in a buffer solution containing 20 mM EDTA in order to extract up to 60 percent of the LC(2). Troponin C (TnC) was also partially removed by this procedure. Mechanical measurements were done following the EDTA extraction and the readditions of first TnC and then LC(2) to the segments. The protein subunit compositions of the same fiber segments were determined following each of these procedures by SDS PAGE of small pieces of the fiber. V(max) was found to decrease as the LC(2) content of the fiber segments was reduced by increasing the duration of extraction. EDTA treatment also resulted in substantial reductions in tension due mainly to the loss of TnC, though smaller reductions due to the extraction of LC(2) were also observed. Reversal of the order of recombination of LC(2) and TnC indicated that the reduction in V(max) following EDTA treatment was a specific effect of LC(2) removal. These results strongly suggest that LC(2) may have roles in determining the kinetics and extent of interaction between myosin and actin.  相似文献   
74.
Red blood cells (RBC) from normal and vitamin E-deficient rats were incubated in a hypertonic solution of reduced glutathione adjusted to pH 8. Methemoglobin formation occurred in intact RBC from both normal and vitamin E-deficient rats. Hemolysis was significantly greater in RBC from vitamin E-deficient rats. Experiments with catalase, superoxide dismutase, and methional showed that H(2)O(2) was the primary extracellular source of oxidant stress. Extracellular superoxide and hydroxyl radical were not involved in oxidant stress. Experiments with dimethyl sulfoxide showed that intracellular hydroxyl radical, generated from H(2)O(2), was the hemolytic agent. Neither methemoglobin formation nor lipid peroxidation involved hydroxyl radical. Indeed, lipid peroxidation and hemolysis in RBC from vitamin E-deficient rats were concurrent rather than consecutive events. Phase contrast microscopy showed that rigid, crenated RBC with a precipitate around the interior periphery formed during glutathione-induced oxidant stress. The precipitate dissolved slowly as the crenated RBC were converted to smooth ghosts. It appeared that protein precipitates involving mixed disulfide bonds were reduced and solubilized when extracellular glutathione penetrated the ruptured cell. Comparisons between normal RBC and vitamin E-deficient RBC suggest that vitamin E has little effect on the inward diffusion of extra-cellular H(2)O(2). Vitamin E apparently interacts with different oxidant species derived from intracellular H(2)O(2) in preventing lipid peroxidation and the sulfhydryl group oxidation leading to hemolysis.  相似文献   
75.
76.
During maximal contractions, the sum of forces exerted by homonymous muscles unilaterally is typically larger than the sum of forces exerted by the same muscles bilaterally. This phenomenon is known as the bilateral deficit (BLD), and it is suggested that this deficit is due to neural inhibition. It remains unclear, however, whether such inhibition is mediated by supraspinal mechanisms or by reflex pathways at the level of spinal cord. To further study the origin of likely neural influences, we tested for the presence of BLD under the condition of reflexive force generation. Force output and integrated electromyogram (iEMG) (quadriceps femoris) were measured in 17 male participants after initiation of the myotatic patellar reflex under unilateral and bilateral conditions. A significant BLD of 9.26 +/- 1.19 (P = 0.004) and 16.76 +/- 4.69% (P = 0.001) was found for force and iEMG, respectively. However, because similar findings were not evident during maximal isometric knee extensions, it is difficult to predict the contribution of a spinal mechanism to the BLD under the condition of maximal voluntary activation.  相似文献   
77.
78.
Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions.  相似文献   
79.
The superior strength and stiffness of carbon nanotubes (CNTs) make them attractive for many structural applications. Although the strength and stiffness of CNTs are extremely high, fibres of aligned CNTs have been found to date to be far weaker than the constituent CNTs. The intermolecular interactions between the CNTs in the fibres are governed by weak van der Waals forces, resulting in slippage between CNTs which occurs at tensions well below the breaking strength of the CNTs. Both theoretical and experimental studies show that by introducing chemical bonds between the CNTs increases load transfer and prevents the CNTs from slipping.  相似文献   
80.
Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor l-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that l-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that l-NIO would not be useful in alleviating the adverse effects of cardiac H/R.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号