首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   15篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   15篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1932年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
61.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
62.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   
63.
Autolytic defective mutant of Streptococcus faecalis.   总被引:21,自引:14,他引:7       下载免费PDF全文
Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme.  相似文献   
64.
65.
66.
Endocrine, behavioural and immunologic processes, together with body growth, were evaluated in gilts that were defeated at 10 weeks of age in resident-intruder tests. Immediately after defeat, gilts were either separated from or reunited with a familiar conspecific (litter-mate; always a barrow). Gilts were assigned to one of four treatments: (a) DI: defeat, followed by isolation (separation from original litter-mate; n=8); (b) I: no defeat, isolation (control group; n=9); (c) DP; defeat, followed by pair-housing (reunion with original litter-mate; n=8); and (d) P: no defeat, pair-housing (control group; n=8). The following general conclusions were derived: (1) social defeat caused pronounced short-term elevations in hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary activities, and of prolactin levels. Moreover, as soon as 1h after defeat, percentages of blood lymphocytes and neutrophilic granulocytes were, respectively, decreased and increased; (2) social defeat had some long-lasting influence on behaviour and physiology, but isolation predominantly determined responses in the longer term. Defeat, as well as isolation, resulted in increased cardiovascular activities compared to P controls, as observed in a novel object test (NOT: +7 days) and an aversion test (AVT: +14 days). Moreover, defeated as well as isolated gilts did not habituate to a repeated novel environment test (NET: -7, +2 and +7 days) in terms of frequencies of vocalising, whereas P controls did. Isolation, through the separation from any other pig, was responsible for the other observed long-term characteristics, which developed progressively. Isolated gilts showed high mobilities and high cortisol responses in the repeated NET (+7 days), not being habituated. This contrasted the reactions of pair-housed gilts, which were much reduced. In addition to their high cardiovascular activities in the NOT and the AVT, isolated gilts also displayed higher heart rates in the repeated NET and during human presence following the NOT, compared to pair-housed gilts. Finally, isolated gilts were more inhibited to approach a novel object (in the NOT) than pair-housed pigs; and (3) stress responses of defeated gilts were modulated by the subsequent social environment. Stimulation of the HPA-axis (plasma- and salivary cortisol) was prolonged in those defeated gilts which were isolated (observed in the first hour). Changes in leucocyte subsets were still observed after 3 days in DI, but were 'normalised' within 1 day in DP gilts. Two days after defeat, habituation to the repeated NET in terms of mobility and salivary cortisol responses occurred in control and DP gilts, but not in DI gilts. We argue that these effects of the social environment shortly after defeat were related to a stress-reducing effect of a stable social relationship, i.e. social support.  相似文献   
67.
C H Jackson  N C MacDonald  J W Cornett 《CMAJ》1984,131(1):25-32,37
Acetaminophen is an effective analgesic and antipyretic agent with few adverse effects when used in recommended dosages. The drug is metabolized mainly in the liver, and the several end products have no harmful effects. An intermediate compound in a minor metabolic pathway, however, is toxic; it is normally inactivated by glutathione. In the case of an acetaminophen overdose the hepatic stores of glutathione seem to become depleted, leaving the toxic intermediate free to damage liver tissue. Such damage is unlikely to occur unless the plasma concentration of acetaminophen peaks above 150 micrograms/mL--a level far in excess of the 5 to 20 micrograms/mL achieved with therapeutic doses of the drug. Long-term therapeutic use of acetaminophen does not appear to be associated with liver damage, although some case reports suggest the possibility. Acetaminophen poisoning follows an acute overdose and, if untreated, is manifested clinically by an initial phase of nonspecific signs and symptoms, a latent period in which the liver transaminase levels rise and then, 3 to 5 days after the ingestion, signs of more serious hepatic dysfunction. Most patients do not progress beyond the first or second phase. They and those who survive the third phase recover with no residual injury to the liver. Appropriate antidotal therapy markedly reduces the severity of the initial damage.  相似文献   
68.
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.Since its introduction in the late 90s (1), MALDI imaging mass spectrometry (MS) technology has witnessed a phenomenal expansion. Initially introduced for the mapping of intact proteins from fresh frozen tissue sections (2), imaging MS is now routinely applied to a wide range of different compounds including peptides, proteins, lipids, metabolites, and xenobiotics (37). Numerous compound-specific sample preparation protocols and analytical strategies have been developed. These include tissue sectioning and handling (814), automated matrix deposition approaches and data acquisition strategies (1521), and the emergence of in situ tissue chemistries (2225). Originally performed on sections cut from fresh frozen tissue specimens, methodologies incorporating an in situ enzymatic digestion step prior to matrix application have been optimized to access the proteome locked in formalin-fixed paraffin-embedded tissue biopsies (2529). The possibility to use tissues preserved using non-cross-linking approaches has also been demonstrated (3032). These methodologies are of high importance for the study of numerous diseases because they potentially allow the retrospective analysis for biomarker validation and discovery of the millions of tissue biopsies currently stored worldwide in tissue banks and repositories.In the past decade, instrumentation for imaging MS has also greatly evolved. Whereas the first MS images were collected with time-of-flight instruments (TOF) capable of repetition rates of a few hertz, modern systems are today capable of acquiring data in the kilohertz range and above with improved sensitivity, mass resolving power, and accuracy, significantly reducing acquisition time and improving image quality (33, 34). Beyond time-of-flight analyzers, other MALDI-based instruments have been used such as ion traps (3537), Qq TOF instruments (3840), and trap-TOF (16, 41). Ion mobility technology has also been used in conjunction with imaging MS (4244). More recently, MALDI FT/ICR and Orbitrap mass spectrometers have been demonstrated to be extremely valuable instruments for the performance of imaging MS at very high mass resolving power (4547). These non-TOF-based systems have proven to be extremely powerful for the imaging of lower molecular weight compounds such as lipids, drugs, and metabolites. Home-built instrumentation and analytical approaches to probe tissues at higher spatial resolution (1–10 μm) have also been described (4850). In parallel to instrumentation developments, automated data acquisition, image visualization, and processing software packages have now also been developed by most manufacturers.To date, a wide range of biological systems have been studied using imaging MS as a primary methodology. Of strong interest are the organization and identification of the molecular composition of diseased tissues in direct correlation with the underlying histology and how it differs from healthy tissues. Such an approach has been used for the study of cancers (5154), neurologic disorders (5557), and other diseases (58, 59). The clinical potential of the imaging MS technology is enormous (7, 60, 61). Results give insights into the onset and progression of diseases, identify novel sets of disease-specific markers, and can provide a molecular confirmation of diagnosis as well as aide in outcome prediction (6264). Imaging MS has also been extensively used to study the development, functioning, and aging of different organs such as the kidney, prostate, epididymis, and eye lens (6570). Beyond the study of isolated tissues or organs, whole-body sections from several model animals such as leeches, mice, and rats have been investigated (7174). For these analyses, specialized instrumentation and protocols are necessary for tissue sectioning and handling (72, 73). Whole-body imaging MS opens the door to the study of the localization and accumulation of administered pharmaceuticals and their known metabolites at the level of entire organisms as well as the monitoring of their efficacy or toxicity as a function of time or dose (72, 73, 75, 76).There is considerable interest in determining the identification and localization of small biomolecules such as lipids in tissues because they are involved in many essential biological functions including cell signaling, energy storage, and membrane structure and function. Defects in lipid metabolism play a role in many diseases such as muscular dystrophy and cardiovascular disease. Phospholipids in tissues have been intensively studied by several groups (37, 40, 7783). In this respect, for optimal recovery of signal, several variables such as the choice of matrix for both imaging and fragmentation, solvent system, and instrument polarity have been investigated (20, 84). Particularly, the use of lithium cation adducts to facilitate phospholipid identification by tandem MS directly from tissue has also been reported (85). Of significant interest is the recent emergence of two new solvent-free matrix deposition approaches that perform exceptionally well for phospholipid imaging analyses. The first approach, described by Hankin et al. (86), consists in depositing the matrix on the sections through a sublimation process. The described sublimation system consists of sublimation glassware, a heated sand or oil bath (100–200 °C), and a primary vacuum pump (∼5 × 10−2 torr). Within a few minutes of initiating the sublimation process, an exceptionally homogeneous film of matrix forms on the section. The thickness of the matrix may be controlled by regulating pressure, temperature, and sublimation time. The second approach, described by Puolitaival et al.(87), uses a fine mesh sieve (≤20 μm) to filter finely ground matrix on the tissue sections. Agitation of the sieve results in passage of the matrix through the mesh and the deposition of a fairly homogeneous layer of submicrometer matrix crystals of the surface of the sections. The matrix density on the sections is controlled by direct observation using a standard light microscope. This matrix deposition approach was also found to be ideal to image certain drug compounds (88, 89). Both strategies allow very rapid production of homogeneous matrix coatings on tissue sections with a fairly inexpensive setup. Signal recovery was found to be comparable with those obtained by conventional spray deposition. With the appropriate size sublimation device or sieve, larger sections with dimensions of several centimeters such as those cut from mouse or rat whole bodies can also be rapidly and homogeneously coated.Here we present several examples of MALDI imaging MS of phospholipids from tissue sections using TOF mass spectrometers over a wide range of dimensions from whole-body sections (several centimeters), to individual organs (several millimeters), down to high spatial resolution imaging of selected tissue areas (hundreds of micrometers) at 10-μm lateral resolution and below. For all of these dimension ranges, technological considerations and practical aspects are discussed. In light of the imaging MS results, we also address issues faced for compound identification by tandem MS analysis performed directly on the sections. Finally, we discuss under “Perspective” our vision of the future of the field as well as the technological improvements and analytical tools that need to be improved upon and developed.  相似文献   
69.

Background

Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms.

Results

Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected.

Conclusions

Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号