首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   48篇
  417篇
  2021年   4篇
  2018年   4篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   14篇
  2013年   12篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   10篇
  2007年   15篇
  2006年   11篇
  2005年   20篇
  2004年   20篇
  2003年   11篇
  2002年   5篇
  2001年   7篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1996年   4篇
  1994年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   10篇
  1988年   12篇
  1987年   14篇
  1986年   11篇
  1985年   9篇
  1984年   3篇
  1983年   12篇
  1982年   5篇
  1981年   8篇
  1980年   8篇
  1979年   10篇
  1978年   12篇
  1977年   6篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   8篇
  1968年   2篇
  1967年   3篇
  1927年   2篇
排序方式: 共有417条查询结果,搜索用时 13 毫秒
101.
高等植物中的磷酸烯醇式丙酮酸羧激酶   总被引:1,自引:0,他引:1  
简要介绍了近年来有关高等植物中磷酸烯醇式丙酮酸羧激酶(PEPCK)的研究进展,并讨论了此酶的结构、功能和调节等方面的问题。  相似文献   
102.
During entry into the cell cycle a phosphatidylcholine (PC) metabolic cycle is activated. We have examined the hypothesis that PC synthesis during the G(0) to G(1) transition is controlled by one or more lipid products of PC turnover acting directly on the rate-limiting enzyme in the synthesis pathway, CTP: phosphocholine cytidylyltransferase (CCT). The acceleration of PC synthesis was two- to threefold during the first hour after addition of serum to quiescent IIC9 fibroblasts. The rate increased to approximately 15-fold above the basal rate during the second hour. The production of arachidonic acid, diacylglycerol (DAG), and phosphatidic acid (PA) preceded the second, rapid phase of PC synthesis. However, an increase in the cellular content of these lipid mediators was detected only for DAG. CCT activation and translocation to membranes accompanied the second phase of the PC synthesis acceleration. Bromoenol lactone (BEL), an inhibitor of calcium-independent phospholipase A(2) and PA phosphatase, blocked production of fatty acids and DAG, inhibited both phases of the PC synthesis response to serum, and reduced CCT activity and membrane affinity. The effect of BEL on PC synthesis was partially reversed by in situ generation of DAG via exogenous PC-specific phospholipase C to generate approximately 2-fold elevation in PC-derived DAG. Exogenous arachidonic acid also partially reversed the inhibition by BEL, but only at a concentration that generated a supra-physiological cellular content of free fatty acid. 1-Butanol, which blocks PA production, had no effect on DAG generation, or on PC synthesis. We conclude that fatty acids and DAG could contribute to the initial slow phase of the PC synthesis response. DAG is the most likely lipid regulator of CCT activity and the rapid phase of PC synthesis. However, processes other than direct activation of CCT by lipid mediators likely contribute to the highly accelerated phase during entry into the cell cycle.  相似文献   
103.
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019  相似文献   
104.
Background aimX-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect' (XMEN) disease is caused by mutations in the magnesium transporter 1 (MAGT1) gene. Loss of MAGT1 function results in a glycosylation defect that abrogates expression of key immune proteins such as the NKG2D receptor on CD8+ T and NK cells, which is critical for the recognition and killing of virus-infected and transformed cells, a biomarker for MAGT1 function. Patients with XMEN disease frequently have increased susceptibility to EBV infections and EBV-associated B cell malignancies, for which no specific treatment options are currently available. Experimental transfer of donor EBV-specific cytotoxic T cells may be beneficial but carries the risks of eliciting alloimmune responses. An approach for cell therapy to address viral infections and associated complications that avoids the risks of alloimmunity is needed.MethodsHere the authors assess the feasibility and efficiency of correcting autologous lymphocytes from XMEN patients by MAGT1 mRNA electroporation (EP) that avoids genomic integration and can be scaled for clinical application.Results and conclusionsRestoration of NKG2D expression was demonstrated in XMEN patient lymphocytes after MAGT1 mRNA electroporation that reach healthy donor levels in CD8+ T and NK cells at 1-2 days after EP. NKG2D expression persisted at ~50% for 2 weeks after EP. Functionally, mRNA-correction of XMEN NK cells rescued cytotoxic activity also to healthy donor NK cell level. The restored NKG2D receptor expression and function were unaffected by cryopreservation, which will make feasible repeat infusions of MAGT1 mRNA-corrected autologous XMEN CD8+ T and NK cells for potential short term therapy for XMEN patients without the risks of alloimmunization.  相似文献   
105.
5′-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5′-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5′-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 Å resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5′-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5′-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and Streptococcus pneumoniae MTAN, may be different from that found in EcMTAN.  相似文献   
106.
Conclusion It is natural for us — living after the Darwinian Revolution and the neo-Darwinian synthesis — to consider the adoption of evolution by natural selection as unconditionally rational, because it now seems the best theory or explanation of many phenomena. Nonetheless, if we take historical inquiry seriously, as allowing us to probe into the ground of our knowledge, the roots of even this rational Darwinism might be unearthed. Darwinian doctrine betrays a deceptive desire for unity and simplicity of principle, and belief that the mechanistic aspect of nature is of the highest significance. Such crucial but questionable presuppositions are more easily discerned historically, insofar as they chronologically preceded Darwin's particular theoretical conviction and were even set off as a metaphysics of divine law.We have seen how Darwin's teaching about nature emerged within that theistic metaphysics. It emerged in a prior metaphysical debate in his mind between the contemporary belief in special creations and the belief in a designed hierarchy of physical laws. One can hardly deny that Darwin favored the superior side in this contest; but the contest was a narrow one whose basic premises he never clearly criticized. On the one hand, of course, his conviction about a lawful genesis inspired him to take a broad view of things and to seek out important general phenomena. But, on the other hand, it ensured that his new empirical notions would be easily drawn into the preferred cosmology. Historically, this seems to have occurred in Darwin's adoption of Malthus' principle of population and his extension of it to the whole account of descent: Malthusianism was readily attached to an ultimate scheme of things. Consequently, the key concepts that Darwin developed out of his Malthusian views — perfect adaptation and selection — reflect his cosmological prepossession, his desire to express a total and teleological process of creation. Perhaps our most valuable, and most undervalued, token of Darwin's metaphysical orientation is his reliance on a human technique (selective breeding) to explain Nature's way. In sum, to understand Darwin's faith in his grand view of life, we should not ignore the metaphysics that preceded and structured it, the metaphysics that linked the principles of contemporary science to primordial creation. Nor should we fail to see that such a metaphysics leads natural philosophy into a shadowy realm, where system can come to look like science, and one insight like an absolute.  相似文献   
107.
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.  相似文献   
108.
It is generally well understood that some ecological factors select for increased and others for decreased dispersal. However, it has remained difficult to assess how the evolutionary dynamics are influenced by the spatio-temporal structure of the environment. We address this question with an individual-based model that enables habitat structure to be controlled through variables such as patch size, patch turnover rate, and patch quality. Increasing patch size at the expense of patch density can select for more or less dispersal, depending on the initial configuration. In landscapes consisting of high-quality and long-lived habitat patches, patch degradation selects for increased dispersal, yet patch loss may select for reduced dispersal. These trends do not depend on the component of life-history that is affected by habitat quality or the component of life-history through which density-dependence operates. Our results are based on a mathematical method that enables derivation of both the evolutionary stable strategy and the stationary genotype distribution that evolves in a polymorphic population. The two approaches generally lead to similar predictions. However, the evolutionary stable strategy assumes that the ecological and evolutionary time scales can be separated, and we find that violation of this assumption can critically alter the evolutionary outcome.  相似文献   
109.

Background

Extensive focus is placed on the comparative analyses of consensus genotypes in the study of West Nile virus (WNV) emergence. Few studies account for genetic change in the underlying WNV quasispecies population variants. These variants are not discernable in the consensus genome at the time of emergence, and the maintenance of mutation-selection equilibria of population variants is greatly underestimated. The emergence of lineage 1 WNV strains has been studied extensively, but recent epidemics caused by lineage 2 WNV strains in Hungary, Austria, Greece and Italy emphasizes the increasing importance of this lineage to public health. In this study we explored the quasispecies dynamics of minority variants that contribute to cell-tropism and host determination, i.e. the ability to infect different cell types or cells from different species from Next Generation Sequencing (NGS) data of a historic lineage 2 WNV strain.

Results

Minority variants contributing to host cell membrane association persist in the viral population without contributing to the genetic change in the consensus genome. Minority variants are shown to maintain a stable mutation-selection equilibrium under positive selection, particularly in the capsid gene region.

Conclusions

This study is the first to infer positive selection and the persistence of WNV haplotype variants that contribute to viral fitness without accompanying genetic change in the consensus genotype, documented solely from NGS sequence data. The approach used in this study streamlines the experimental design seeking viral minority variants accurately from NGS data whilst minimizing the influence of associated sequence error.  相似文献   
110.
CTP:phosphocholine cytidylyltransferase (CCT), a rate-limiting enzyme in phosphatidylcholine synthesis, is regulated by reversible membrane interactions mediated by an amphipathic helical domain (M) that binds selectively to anionic lipids. CCT is a dimer; thus the functional unit has two M domains. To probe the functional contribution of each domain M we prepared a CCT heterodimer composed of one full-length subunit paired with a CCT subunit truncated before domain M that was also catalytically dead. We compared this heterodimer to the full-length homodimer with respect to activation by anionic vesicles, vesicle binding affinities, and promotion of vesicle aggregation. Surprisingly for all three functions the dimer with just one domain M behaved similarly to the dimer with two M domains. Full activation of the wild-type subunit was not impaired by loss of one domain M in its partner. Membrane binding affinities were the same for dimers with one versus two M domains, suggesting that the two M domains of the dimer do not engage a single bilayer simultaneously. Vesicle cross-bridging was also unhindered by loss of one domain M, suggesting that another motif couples with domain M for cross-bridging anionic membranes. Mutagenesis revealed that the positively charged nuclear localization signal sequence constitutes that second motif for membrane cross-bridging. We propose that the two M domains of the CCT dimer engage a single bilayer via an alternating binding mechanism. The tethering function involves the cooperation of domain M and the nuclear localization signal sequence, each engaging separate membranes. Membrane binding of a single M domain is sufficient to fully activate the enzymatic activity of the CCT dimer while sustaining the low affinity, reversible membrane interaction required for regulation of CCT activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号