首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   45篇
  2021年   4篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   14篇
  2013年   13篇
  2012年   19篇
  2011年   10篇
  2010年   13篇
  2009年   12篇
  2008年   11篇
  2007年   17篇
  2006年   11篇
  2005年   19篇
  2004年   21篇
  2003年   12篇
  2002年   4篇
  2001年   8篇
  2000年   7篇
  1999年   10篇
  1998年   6篇
  1996年   5篇
  1994年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   9篇
  1988年   9篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   3篇
  1983年   12篇
  1982年   5篇
  1981年   7篇
  1980年   8篇
  1979年   10篇
  1978年   12篇
  1977年   5篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   4篇
  1969年   8篇
  1968年   2篇
  1967年   3篇
  1927年   2篇
排序方式: 共有418条查询结果,搜索用时 281 毫秒
171.
Companion cell-specific inhibition of the potato sucrose transporter SUT1   总被引:26,自引:3,他引:23  
In many plants, translocation of sucrose from mesnsophyll to phloem for long-distance transport is carrier-mediated. The sucrose H+-symporter gene SUT1 from potato is expressed at high levels in the phloem of mature, exporting leaves and at lower levels in other organs. Inhibition of SUT1 by expression of an antisense gene in companion cells under control of the rolC promoter leads to accumulation of high amounts of soluble and insoluble carbohydrates in leaves and inhibition of photosynthesis. The distribution of in situ localized starch does not correspond with areas of reduced photosynthesis as shown by fluorescence imaging. Dissection of antisense effects on sink and source organs by reciprocal grafts shows that inhibition of transporter gene expression in leaves is sufficient to produce chlorosis in leaves and reduced tuber yield. In contrast to the arrest of plasmodesmal development found in plants that express yeast invertase in the apoplast, in mature leaves of sucrose transporter antisense plants plasmodesmata are branched and have median cavities. These data strongly support an apoplastic mode of phloem loading in potato, in which the sucrose transporter located at the plasma membrane of the sieve element/companion cell complex represents the primary route for sugar uptake into the long-distance translocation pathway.  相似文献   
172.
The incorporation of [methyl-14C]CDP-choline into phosphatidylcholine was measured in HeLa cells permeabilized with 0.125 mg digitonin/mL. The rate of phosphatidylcholine formation was influenced by the concentration of CDP-choline in the medium. The CDP-choline:1,2-diacylglycerol cholinephosphotransferase in permeabilized cells showed a Km of 88 microM for CDP-choline. A similar Km value of 104 microM was found for cholinephosphotransferase in microsomes isolated from HeLa cells when assayed in the presence of 2.4 mM dioleoylglycerol. In the absence of added diacylglycerol, the Km for CDP-choline for the microsomal cholinephosphotransferase was only 38 microM. The incorporation of [methyl-14C]CDP-choline into phosphatidylcholine was stimulated by the supply of diacylglycerol in both HeLa cells and isolated microsomes. A 2.4 mM dioleoylglycerol suspension increased cholinephosphotransferase activity fourfold in microsomes. The digitonin-treated cells were impermeable to the dioleoylglycerol suspension. Incubation of permeabilized cells with 150 microM acyl-CoA and 0.8 mM glycero-3-phosphate tripled cellular diacylglycerol levels, causing a doubling in the rate of phosphatidylcholine synthesis. A similar incubation of microsomes with acyl-CoA stimulated phosphatidylcholine synthesis twofold. Furthermore, incubation of microsomes with [3H]diacylglycerol and [14C]CDP-choline showed that both of the substrates were incorporated into phosphatidylcholine at the same rate. This result suggests that the stimulatory effects on cholinephosphotransferase arise from increases in the availability of substrates rather than activation of the enzyme. These results suggest that both in the permeabilized cells and in isolated membranes, the biosynthesis of phosphatidylcholine can be limited by both CDP-choline and diacylglycerol.  相似文献   
173.
Three analogues of the helical ionophore gramicidin A have been synthesized with 13C-labeled carbonyls (13C=O) incorporated at either Gly2, Ala3, or Val7. A fourth compound incorporated 13C at both the carbonyl and α-carbon of Gly2 within the same molecule. These labels were studied using solid-state, proton-enhanced, 13C nuclear magnetic resonance (NMR) in hydrated dispersions of dimyristoylphosphatidylcholine (DMPC)-gramicidin A. The dispersions were aligned on glass coverslips whose orientation to the magnetic field could be varied through 180°. The orientation dependence of the NMR spectrum was used to obtain an accurate measurement of the 13C chemical shift anisotropy (CSA), and in the case of the fourth compound, the 13C—13C dipolar coupling constant. From the measured CSA and estimates of the orientation of the 13C shielding tensor, we are able to determine the direction of the 13C=O bonds and to compare these with the predictions of the various reported models for the configuration of gramicidin A in phospholipid bilayers. Our results are consistent with the left-handed ππ6.3LD single-stranded helix (Urry, D. W., J. T. Walker, and T. L. Trapane. 1982. J. Membr. Biol. 69:225-231). The right-handed ππ6.3LD single-stranded helix observed for gramicidin A in sodium dodecyl sulfate micelles (Arseniev, A. S., I. L. Barsukov, V. F. Bystrov, A. L. Loize, and Yu A. Ovchinnikov. 1985. FEBS (Fed. Eur. Biochem. Soc.) Lett. 186:168-174) yields a poorer fit to the data. However, the width of the carbonyl resonances suggests a distribution of molecular geometries possibly resulting from a spread in the helix pitch and handedness. Double-stranded helices and β sheet structures are excluded. In dispersions in which the lipid is in the Lα phase, the gramicidin A undergoes rapid reorientation about an axis which is centered on the normal to the plane of the coverslips. When the supporting lipid is in the Lβ′ phase the helices are rigid on the timescale of 13C-NMR. The configuration of gramicidin A is unaltered by Lα-Lβ′ phase transition of the bilayer lipid.  相似文献   
174.
14‐3‐3 proteins are ubiquitously‐expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14‐3‐3epsilon and 14‐3‐3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14‐3‐3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14‐3‐3gamma‐deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14‐3‐3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time‐lapse live imaging of brain slices revealed that the ablation of the 14‐3‐3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14‐3‐3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14‐3‐3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14‐3‐3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 600–614, 2016  相似文献   
175.
C N Cornell  L J Kaplan 《Biochemistry》1978,17(9):1755-1758
Since we were able to demonstrate that the sulfhydryl group is located in the crevice which opens during the N--F transition (Cornell, C. N., & Kaplan, L. J. (1978) Biochemistry 17 (preceding paper in this issue), the investigation was extended by characterizing the environment during the N--B transition and in the A isomer. The results indicate that the N--B and N--F transitions are very similar in that the sulfhydryl group moves from a restricted to unhindered environment during both. The use of molecular dipstick technique further demonstrated the similarity between the F and A forms. However, since A is a covalently stabilized form of albumin after a pH dependent transition, it retains its properties during subsequent pH changes rather than reverting to the N form. We were thus able to titrate spin-labeled A through the pH range of the acidic transitions without detecting the N--F transition. Isoelectric focusing analysis of A generated during alkaline aging and purified by SP-Sephadex chromatography indicates that it is a mixture of a small number of albumin forms rather than the large number of components once thought to be formed during aging.  相似文献   
176.
This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities.  相似文献   
177.
CTP:phosphocholine cytidylyltransferase (CCT), an amphitropic enzyme that regulates phosphatidylcholine synthesis, is composed of a catalytic head domain and a regulatory tail. The tail region has dual functions as a regulator of membrane binding/enzyme activation and as an inhibitor of catalysis in the unbound form of the enzyme, suggesting conformational plasticity. These functions are well conserved in CCTs across diverse phyla, although the sequences of the tail regions are not. CCT regulatory tails of diverse origins are composed of a long membrane lipid-inducible amphipathic helix (m-AH) followed by a highly disordered segment, reminiscent of the Parkinson disease-linked protein, α-synuclein, which we show shares a novel sequence motif with vertebrate CCTs. To unravel features required for silencing, we created chimeric enzymes by fusing the catalytic domain of rat CCTα to the regulatory tail of CCTs from Drosophila, Caenorhabditis elegans, or Saccharomyces cerevisiae or to α-synuclein. Only the tail domains of the two invertebrate CCTs were competent for both suppression of catalytic activity and for activation by lipid vesicles. Thus, both silencing and activating functions of the m-AH can tolerate significant changes in length and sequence. We identified a highly amphipathic 22-residue segment in the m-AH with features conserved among animal CCTs but not yeast CCT or α-synuclein. Deletion of this segment from rat CCT increased the lipid-independent Vmax by 10-fold, equivalent to the effect of deleting the entire tail, and severely weakened membrane binding affinity. However, membrane binding was required for additional increases in catalytic efficiency. Thus, full activation of CCT may require not only loss of a silencing conformation in the m-AH but a gain of an activating conformation, promoted by membrane binding.  相似文献   
178.
The effect of treatment with either whole calf thymus histones, or individually isolated histones, or polyarginine, or polylysine, on the nuclear size of BHK21 cells has been investigated. Incubation of the cells with mixed histones (12.5--44 microgram/ml) for 1 h considerably increased nuclear size. Increasing the histone concentration and/or the incubation time resulted in a decrease in the effect and could result in no change in nuclear size. Treatment of the cells with polyarginine or polylysine did not affect nuclear size. Experiments with individually isolated histones showed that the nuclear size effect was almost exclusively due to the histone H4. It is argued that the changes observed most likely resulted from interaction of H4 with the nucleus, and could reflect the properties of this particular histone molecule.  相似文献   
179.
180.
Band 3, the erythrocyte anion transport protein, mediates the one-for-one exchange of bicarbonate and chloride ions across the membrane and consequently plays an important role in respiration. Binding to the protein forms the first step in the translocation of the chloride across the membrane. 35Cl and 37Cl NMR relaxation measurements at various field strengths were used to study chloride binding to the protein in the presence and absence of the transport inhibitor 4,4′-dinitrostilbene-2,2′-disulfonate. Significant differences occurred in the NMR relaxation rates depending on whether the inhibitor was present or not. The results indicate that the rate of chloride association and dissociation at each external binding site occurs on a time scale of 5 μs. This implies that the transmembrane flux is not limited by the rate of chloride binding to the external chloride binding site of band 3. The rotational correlation-time of chloride bound to band 3 was found to be 20 ns with a quadrupole coupling constant of 3 MHz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号