首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1698篇
  免费   140篇
  国内免费   1篇
  2023年   6篇
  2022年   8篇
  2021年   20篇
  2020年   13篇
  2019年   19篇
  2018年   21篇
  2017年   19篇
  2016年   38篇
  2015年   82篇
  2014年   94篇
  2013年   124篇
  2012年   146篇
  2011年   150篇
  2010年   114篇
  2009年   69篇
  2008年   100篇
  2007年   124篇
  2006年   95篇
  2005年   95篇
  2004年   78篇
  2003年   97篇
  2002年   61篇
  2001年   22篇
  2000年   11篇
  1999年   16篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   15篇
  1994年   16篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   9篇
  1986年   6篇
  1984年   6篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1977年   8篇
  1973年   3篇
  1972年   4篇
  1969年   5篇
  1967年   3篇
  1958年   3篇
  1953年   6篇
  1950年   5篇
排序方式: 共有1839条查询结果,搜索用时 15 毫秒
991.
The K15 gene of Kaposi's sarcoma-associated herpesvirus (also known as human herpesvirus 8) consists of eight alternatively spliced exons and has been predicted to encode membrane proteins with a variable number of transmembrane regions and a common C-terminal cytoplasmic domain with putative binding sites for SH2 and SH3 domains, as well as for tumor necrosis factor receptor-associated factors. These features are reminiscent of the latent membrane proteins LMP-1 and LMP2A of Epstein-Barr virus and, more distantly, of the STP, Tip, and Tio proteins of the related gamma(2)-herpesviruses herpesvirus saimiri and herpesvirus ateles. These viral membrane proteins can activate a number of intracellular signaling pathways. We have therefore examined the abilities of different K15-encoded proteins to initiate intracellular signaling. We found that a 45-kDa K15 protein derived from all eight K15 exons and containing 12 predicted transmembrane domains in addition to the cytoplasmic domain activated the Ras/mitogen-activated protein kinase (MAPK) and NF-kappaB pathways, as well as (more weakly) the c-Jun N-terminal kinase/SAPK pathway. Activation of the MAPK and NF-kappaB pathways required phosphorylation of tyrosine residue 481 within a putative SH2-binding site (YEEVL). This motif was phosphorylated by the tyrosine kinases Src, Lck, Yes, Hck, and Fyn. The region containing the YEEVL motif interacted with tumor necrosis factor receptor-associated factor 2 (TRAF-2), and a dominant negative TRAF-2 mutant inhibited the K15-mediated activation of the Ras/MAPK pathway, suggesting the involvement of TRAF-2 in the initiation of these signaling routes. In contrast, several smaller K15 protein isoforms activated these pathways only weakly. All of the K15 isoforms tested were, however, localized in lipid rafts, suggesting that incorporation into lipid rafts is not sufficient to initiate signaling. Additional regions of K15, located presumably in exons 2 to 5, may therefore contribute to the activation of these pathways. These findings illustrate that the 45-kDa K15 protein engages pathways similar to LMP1, LMP2A, STP, Tip, and Tio but combines functional features that are separated between LMP1 and LMP2A or STP and Tip.  相似文献   
992.
A chromatography fraction, prepared from isolated thylakoids of a fatty acid desaturation mutant (Fad6/desA Colon, two colons Km(r)) of the cyanobacterium Synechocystis 6803, could induce an initial cleavage of the D1 protein in Photosystem II (PSII) particles of Synechocystis 6803 mutant and Synechococcus 7002 wild type as well as in supercomplexes of PSII-light harvesting complex II of spinach. Proteolysis was demonstrated both in darkness and in light as a reduction in the amount of full-length D1 protein or as a production of C-terminal initial degradation fragments. In the Synechocystis mutant, the main degradation fragment was a 10-kDa C-terminal one, indicating an initial cleavage occurring in the cytoplasmic DE-loop of the D1 protein. A protein component of 70-90 kDa isolated from the chromatographic fraction was found to be involved in the production of this 10-kDa fragment. In spinach, only traces of the corresponding fragment were detected, whereas a 24-kDa C-terminal fragment accumulated, indicating an initial cleavage in the lumenal AB-loop of the D1 protein. Also in Synechocystis the 24-kDa fragment was detected as a faint band. An antibody raised against the Arabidopsis DegP2 protease recognized a 35-kDa band in the proteolytically active chromatographic fraction, suggesting the existence of a lumenal protease that may be the homologue DegP of Synechocystis. The identity of the other protease cleaving the D1 protein in the DE-loop exposed on the stromal (cytoplasmic) side of the membrane is discussed.  相似文献   
993.
Netrins promote axon outgrowth and turning through DCC/UNC-40 receptors. To characterize Netrin signaling, we generated a gain-of-function UNC-40 molecule, MYR::UNC-40. MYR::UNC-40 causes axon guidance defects, excess axon branching, and excessive axon and cell body outgrowth. These defects are suppressed by loss-of-function mutations in ced-10 (a Rac GTPase), unc-34 (an Enabled homolog), and unc-115 (a putative actin binding protein). ced-10, unc-34, and unc-115 also function in endogenous unc-40 signaling. Our results indicate that Enabled functions in axonal attraction as well as axon repulsion. UNC-40 has two conserved cytoplasmic motifs that mediate distinct downstream pathways: CED-10, UNC-115, and the UNC-40 P2 motif act in one pathway, and UNC-34 and the UNC-40 P1 motif act in the other. Thus, UNC-40 might act as a scaffold to deliver several independent signals to the actin cytoskeleton.  相似文献   
994.
CD8(+) T cells infiltrating the CNS control infection by the neurotropic JHM strain of mouse hepatitis virus. Differential susceptibility of infected cell types to clearance by perforin or IFN-gamma uncovered distinct, nonredundant roles for these antiviral mechanisms. To separately evaluate each effector function specifically in the context of CD8(+) T cells, pathogenesis was analyzed in mice deficient in both perforin and IFN-gamma (PKO/GKO) or selectively reconstituted for each function by transfer of CD8(+) T cells. Untreated PKO/GKO mice were unable to control the infection and died of lethal encephalomyelitis within 16 days, despite substantially higher CD8(+) T cell accumulation in the CNS compared with controls. Uncontrolled infection was associated with limited MHC class I up-regulation and an absence of class II expression on microglia, coinciding with decreased CD4(+) T cells in CNS infiltrates. CD8(+) T cells from perforin-deficient and wild-type donors reduced virus replication in PKO/GKO recipients. By contrast, IFN-gamma-deficient donor CD8(+) T cells did not affect virus replication. The inability of perforin-mediated mechanisms to control virus in the absence of IFN-gamma coincided with reduced class I expression. These data not only confirm direct antiviral activity of IFN-gamma within the CNS but also demonstrate IFN-gamma-dependent MHC surface expression to guarantee local T cell effector function in tissues inherently low in MHC expression. The data further imply that IFN-gamma plays a crucial role in pathogenesis by regulating the balance between virus replication in oligodendrocytes, CD8(+) T cell effector function, and demyelination.  相似文献   
995.
IL-2 and IL-15 are thought to be important cytokines for T cell-dependent immune responses. Mice deficient in IL-2, IL-2Ralpha, and IL-2Rbeta are each characterized by a rapid lethal autoimmune lymphoproliferative disorder that complicates their use in studies aimed at investigating the role of these cytokines and receptors for immune responses in vivo. We have previously characterized a novel transgenic (Tg) mouse on the IL-2Rbeta-/- genetic background (Tg-/- mice) that lacks autoimmune disease but still contains peripheral T cells that are nonresponsive to IL-2 and IL-15. In the present study, these mice were used to investigate the extent by which IL-2 and IL-15 are essential for T cell immunity in vivo. Tg-/- mice generated near normal primary and secondary Ab responses to OVA, readily mounted first and second set allogeneic skin graft rejection responses, and developed primary and recall CD8 T cell responses to vaccinia virus. However, Tg-/- mice generated a slightly lower level of IgG2a Abs to OVA, exhibited a somewhat delayed first set skin graft rejection response with lower allo-specific CTL, and developed a significantly lower number of IFN-gamma-producing vaccinia-specific CD8+ T cells. Thus, although T effector function is somewhat impaired, T cell immunity is largely functional in the absence of IL-2- and IL-15-induced signaling through IL-2Rbeta.  相似文献   
996.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.  相似文献   
997.
Rapid generation of inducible mouse mutants   总被引:11,自引:2,他引:9  
We have generated an optimized inducible recombination system for conditional gene targeting based on a Cre recombinase–steroid receptor fusion. This configuration allows efficient Cre-mediated recombination in most organs of the mouse upon induction, without detectable background activity. An ES cell line, was established that carries the inducible recombinase and a loxP-flanked lacZ reporter gene. Out of this line, completely ES cell-derived mice were efficiently produced through tetraploid blastocyst complementation, without the requirement of mouse breeding. Our findings provide a new concept allowing the generation of inducible mouse mutants within 6 months, as compared to 14 months using the current protocol.  相似文献   
998.
Depleting B cells with anti-CD20 monoclonal antibodies emerges as a new therapeutic strategy in autoimmune diseases. Preliminary clinical studies suggest therapeutic benefits in patients with classic autoantibody-mediated syndromes, such as autoimmune cytopenias. Treatment responses in rheumatoid arthritis have opened the discussion about whether mechanisms beyond the removal of potentially pathogenic antibodies are effective in B-cell depletion. B cells may modulate T-cell activity through capturing and presenting antigens or may participate in the neogenesis of lymphoid microstructures that amplify and deviate immune responses. Studies exploring which mechanisms are functional in which subset of patients hold the promise of providing new and rational treatment approaches for autoimmune syndromes.  相似文献   
999.
The mechanisms by which the diverse functional identities of neurons are generated are poorly understood. C. elegans responds to thermal and chemical stimuli using 12 types of sensory neurons. The Otx/otd homolog ttx-1 specifies the identities of the AFD thermosensory neurons. We show here that ceh-36 and ceh-37, the remaining two Otx-like genes in the C. elegans genome, specify the identities of AWC, ASE, and AWB chemosensory neurons, defining a role for this gene family in sensory neuron specification. All C. elegans Otx genes and rat Otx1 can substitute for ceh-37 and ceh-36, but only ceh-37 functionally substitutes for ttx-1. Functional substitution in the AWB neurons is mediated by activation of the same downstream target lim-4 by different Otx genes. Misexpression experiments indicate that although the specific identity adopted upon expression of an Otx gene may be constrained by the cellular context, individual Otx genes preferentially promote distinct neuronal identities.  相似文献   
1000.
To avoid immune escape by down-regulation or loss of Ag by the tumor cells, target Ags are needed, which are important for the malignant phenotype and survival of the tumor. We could identify a CD4(+) T cell epitope derived from the human melanoma-associated chondroitin sulfate proteoglycan (MCSP) (also known as high m.w.-melanoma-associated Ag), which is strongly expressed on >90% of human melanoma lesions and is important for the motility and invasion of melanoma cells. However, MCSP is not strictly tumor specific, because it is also expressed in a variety of normal tissues. Therefore, self tolerance should prevent the induction of strong T cell responses against these Ags by vaccination strategies. In contrast, breaking self tolerance to this Ag by effectively manipulating the immune system might mediate antitumor responses, although it would bear the risk of autoimmunity. Surprisingly, we could readily isolate CD4(+) Th cells from the blood of a healthy donor-recognizing peptide MCSP(693-709) on HLA-DR11-expressing melanoma cells. Broad T cell reactivity against this Ag could be detected in the peripheral blood of both healthy donors and melanoma patients, without any apparent signs of autoimmune disease. In some patients, a decline of T cell reactivity was observed upon tumor progression. Our data indicate that CD4(+) T cells are capable of recognizing a membrane glycoprotein that is important in melanoma cell function, and it may be possible that the sizable reactivity to this Ag in most normal individuals contributes to immune surveillance against cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号