首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   155篇
  国内免费   1篇
  2023年   7篇
  2022年   13篇
  2021年   21篇
  2020年   14篇
  2019年   20篇
  2018年   22篇
  2017年   20篇
  2016年   39篇
  2015年   88篇
  2014年   97篇
  2013年   125篇
  2012年   155篇
  2011年   152篇
  2010年   115篇
  2009年   74篇
  2008年   103篇
  2007年   130篇
  2006年   96篇
  2005年   98篇
  2004年   86篇
  2003年   102篇
  2002年   62篇
  2001年   26篇
  2000年   20篇
  1999年   19篇
  1998年   13篇
  1997年   12篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   6篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1977年   8篇
  1972年   4篇
  1969年   6篇
  1967年   4篇
  1953年   6篇
  1950年   6篇
排序方式: 共有1949条查询结果,搜索用时 15 毫秒
181.

Background

Successful treatment of acute radiation syndromes relies on immediate supportive care. In patients with limited hematopoietic recovery potential, hematopoietic stem cell (HSC) transplantation is the only curative treatment option. Because of time consuming donor search and uncertain outcome we propose MSC treatment as an alternative treatment for severely radiation-affected individuals.

Methods and Findings

Mouse mesenchymal stromal cells (mMSCs) were expanded from bone marrow, retrovirally labeled with eGFP (bulk cultures) and cloned. Bulk and five selected clonal mMSCs populations were characterized in vitro for their multilineage differentiation potential and phenotype showing no contamination with hematopoietic cells. Lethally irradiated recipients were i.v. transplanted with bulk or clonal mMSCs. We found a long-term survival of recipients with fast hematopoietic recovery after the transplantation of MSCs exclusively without support by HSCs. Quantitative PCR based chimerism analysis detected eGFP-positive donor cells in peripheral blood immediately after injection and in lungs within 24 hours. However, no donor cells in any investigated tissue remained long-term. Despite the rapidly disappearing donor cells, microarray and quantitative RT-PCR gene expression analysis in the bone marrow of MSC-transplanted animals displayed enhanced regenerative features characterized by (i) decreased proinflammatory, ECM formation and adhesion properties and (ii) boosted anti-inflammation, detoxification, cell cycle and anti-oxidative stress control as compared to HSC-transplanted animals.

Conclusions

Our data revealed that systemically administered MSCs provoke a protective mechanism counteracting the inflammatory events and also supporting detoxification and stress management after radiation exposure. Further our results suggest that MSCs, their release of trophic factors and their HSC-niche modulating activity rescue endogenous hematopoiesis thereby serving as fast and effective first-line treatment to combat radiation-induced hematopoietic failure.  相似文献   
182.
The AID/APOBEC family (comprising AID, APOBEC1, APOBEC2, and APOBEC3 subgroups) contains members that can deaminate cytidine in RNA and/or DNA and exhibit diverse physiological functions (AID and APOBEC3 deaminating DNA to trigger pathways in adaptive and innate immunity; APOBEC1 mediating apolipoprotein B RNA editing). The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast. Here, we have undertaken phylogenetic analysis to glean insight into the primary physiological function of the AID/APOBEC family. We find that although the family forms part of a larger superfamily of deaminases distributed throughout the biological world, the AID/APOBEC family itself is restricted to vertebrates with homologs of AID (a DNA deaminase that triggers antibody gene diversification) and of APOBEC2 (unknown function) identifiable in sequence databases from bony fish, birds, amphibians, and mammals. The cloning of an AID homolog from dogfish reveals that AID extends at least as far back as cartilaginous fish. Like mammalian AID, the pufferfish AID homolog can trigger deoxycytidine deamination in DNA but, consistent with its cold-blooded origin, is thermolabile. The fine specificity of its mutator activity and the biased codon usage in pufferfish IgV genes appear broadly similar to that of their mammalian counterparts, consistent with a coevolution of the antibody mutator and its substrate for the optimal targeting of somatic mutation during antibody maturation. By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci). We conclude that AID and APOBEC2 are likely to be the ancestral members of the AID/APOBEC family (going back to the beginning of vertebrate speciation) with both APOBEC1 and APOBEC3 being mammal-specific derivatives of AID and a complex set of domain shuffling underpinning the expansion and evolution of the primate APOBEC3s.  相似文献   
183.
Prostaglandin H synthase (PGHS) is an autocatalytic enzyme which plays a key role in the arachidonic acid metabolic pathway. PGHS mediates the formation of prostaglandin H2, the precursor for a number of prostaglandins which are important in a wide variety of biological processes, including inflammation, blood clotting, renal function, and tumorigenesis. Here we present a Michaelis-Menten-style model for PGHS. A stability analysis determines when the reaction becomes self-sustaining, and can help explain the regulation of PGHS activity in vivo. We also consider a quasi-steady-state approximation (QSSA) for the model, and present conditions under which the QSSA is expected to be a good approximation. Applying the QSSA for this model can be useful in computationally intensive modeling endeavors involving PGHS.  相似文献   
184.
Under iron limitation, the opportunistic human pathogen Pseudomonas aeruginosa produces the siderophore pyochelin. When secreted into the extracellular environment, pyochelin complexes ferric ions and delivers them, via the outer membrane receptor FptA, to the bacterial cytoplasm. Extracellular pyochelin also acts as a signalling molecule, inducing the expression of pyochelin biosynthesis and uptake genes by a mechanism involving the AraC-type regulator PchR. We have identified a 32 bp conserved sequence element (PchR-box) in promoter regions of pyochelin-controlled genes and we show that the PchR-box in the pchR-pchDCBA intergenic region is essential for the induction of the pyochelin biosynthetic operon pchDCBA and the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin and iron. PchR-box mutations that interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. We conclude that pyochelin, probably in its iron-loaded state, is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation suggests that the siderophore can enter the cytoplasm.  相似文献   
185.
The ESC protein, like other Polycomb Group proteins, is required for heritable silencing of the homeotic genes. ESC is phosphorylated in vivo, but the region of ESC that is phosphorylated and its consequences are not known. Here, we show that the amino-terminal region of ESC (residues 1-60) mediates its phosphorylation and dimerization. Phosphorylation of ESC1-60 in vitro by CK1 and CK2 strongly enhances its dimerization. Both phosphorylation and dimerization are conserved in the mammalian ESC homolog EED, suggesting that they play important roles in vivo. One role is suggested by the effect of phosphatase treatment on native ESC complexes, which does not affect the integrity of the 600 kDa ESC/E(Z) complex, but eliminates the 1 MDa ESC/E(Z) complex, which is distinguished from the former by the presence of the additional subunits PCL and RPD3. Thus, stability and perhaps assembly of larger ESC complexes may depend on ESC phosphorylation.  相似文献   
186.
Anti-PM/Scl antibodies represent a specific serological marker for a subset of patients with scleroderma (Scl) and polymyositis (PM), and especially with the PM/Scl overlap syndrome (PM/Scl). Anti-PM/Scl reactivity is found in 24% of PM/Scl patients and is found in 3–10% of Scl and PM patients. The PM/Scl autoantigen complex comprises 11–16 different polypeptides. Many of those proteins can serve as targets of the anti-PM/Scl B-cell response, but most frequently the PM/Scl-100 and PM/Scl-75 polypeptides are targeted. In the present study we investigated the clinical relevance of a major alpha helical PM/Scl-100 epitope (PM1-α) using a newly developed peptide-based immunoassay and compared the immunological properties of this peptide with native and recombinant PM/Scl antigens. In a technical comparison, we showed that an ELISA based on the PM1-α peptide is more sensitive than common techniques to detect anti-PM/Scl antibodies such as immunoblot, indirect immunofluorescence on HEp-2 cells and ELISA with recombinant PM/Scl polypeptides. We found no statistical evidence of a positive association between anti-PM1-α and other antibodies, with the exception of known PM/Scl components. In our cohort a negative correlation could be found with anti-Scl-70 (topoisomerase I), anti-Jo-1 (histidyl tRNA synthetase) and anti-centromere proteins. In a multicenter evaluation we demonstrated that the PM1-α peptide represents a sensitive and reliable substrate for the detection of a subclass of anti-PM/Scl antibodies. In total, 22/40 (55%) PM/Scl patients, 27/205 (13.2%) Scl patients and 3/40 (7.5%) PM patients, but only 5/288 (1.7%) unrelated controls, tested positive for the anti-PM1-α peptide antibodies. These data indicate that anti-PM1-α antibodies appear to be exclusively present in sera from PM/Scl patients, from Scl patients and, to a lesser extent, from PM patients. The anti-PM1-α ELISA thus offers a new serological marker to diagnose and discriminate different systemic autoimmune disorders.  相似文献   
187.
188.
Protein-based microarrays are among the novel class of rapidly emerging proteomic technologies that will allow us to efficiently perform global proteome analysis. However, the process of designing adequate protein microarrays is a major inherent problem. In this study, we have evaluated a protein microarray platform based on nonpurified affinity-tagged single-chain (sc) Fv antibody fragments to generate proof-of-principle and to demonstrate the specificity and sensitivity of the array design. To this end, we used our human recombinant scFv antibody library genetically constructed around one framework, the n-CoDeR library containing 2 x 10(10) clones, as a source for our probes. The probes were immobilized via engineered C-terminal affinity tags, his- or myc-tags, to either Ni(2+)-coated slides or anti-tag antibody coated substrates. The results showed that highly functional microarrays were generated and that nonpurified scFvs readily could be applied as probes. Specific and sensitive microarrays were obtained, providing a limit of detection in the pM to fM range, using fluorescence as the mode of detection. Further, the results showed that spotting the analyte on top of the arrayed probes, instead of incubating the array with large sample volumes (333 pL vs. 40 microL), could reduce the amount of analyte required 4000 times, from 1200 attomole to 300 zeptomole. Finally, we showed that a highly complex proteome, such as human sera containing several thousand different proteins, could be directly fluorescently labeled and successfully analyzed without compromising the specificity and sensitivity of the antibody microarrays. This is a prerequisite for the design of high-density antibody arrays applied in high-throughput proteomics.  相似文献   
189.
Parkinson's disease (PD) is a common age-related, progressive neurodegenerative disease of unknown etiology. Environmental factors have long been suspected to participate in the pathogenesis of PD due to the existence of neurotoxins that preferentially damage the dopaminergic nigrostriatal pathway. In the past few years, novel insights into the degenerative process have been provided by the discovery of genes responsible for rare monogenic parkinsonian syndromes. Compelling evidence is accumulating, suggesting that the products of several of these genes can interact with environmental toxins and intervene in molecular pathways controlling the functional integrity of mitochondria.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号