首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1793篇
  免费   155篇
  国内免费   1篇
  2023年   7篇
  2022年   13篇
  2021年   21篇
  2020年   14篇
  2019年   20篇
  2018年   22篇
  2017年   20篇
  2016年   39篇
  2015年   88篇
  2014年   97篇
  2013年   125篇
  2012年   155篇
  2011年   152篇
  2010年   115篇
  2009年   74篇
  2008年   103篇
  2007年   130篇
  2006年   96篇
  2005年   98篇
  2004年   86篇
  2003年   102篇
  2002年   62篇
  2001年   26篇
  2000年   20篇
  1999年   19篇
  1998年   13篇
  1997年   12篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1993年   9篇
  1992年   11篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   6篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1977年   8篇
  1972年   4篇
  1969年   6篇
  1967年   4篇
  1953年   6篇
  1950年   6篇
排序方式: 共有1949条查询结果,搜索用时 27 毫秒
151.
152.
The glucose-6-phosphate/phosphate translocator (GPT) acts as an importer of carbon into the plastid. Despite the potential importance of GPT for storage in crop seeds, its regulatory role in biosynthetic pathways that are active during seed development is poorly understood. We have isolated GPT1 from Vicia narbonensis and studied its role in seed development using a transgenic approach based on the seed-specific legumin promoter LeB4. GPT1 is highly expressed in vegetative sink tissues, flowers and young seeds. In the embryo, localized upregulation of GPT1 at the onset of storage coincides with the onset of starch accumulation. Embryos of transgenic plants expressing antisense GPT1 showed a significant reduction (up to 55%) in the specific transport rate of glucose-6-phosphate as determined using proteoliposomes prepared from embryos. Furthermore, amyloplasts developed later and were smaller in size, while the expression of genes encoding plastid-specific translocators and proteins involved in starch biosynthesis was decreased. Metabolite analysis and stable isotope labelling demonstrated that starch biosynthesis was also reduced, although storage protein biosynthesis increased. This metabolic shift was characterized by upregulation of genes related to nitrogen uptake and protein storage, morphological variation of the protein-storing vacuoles, and a crude protein content of mature seeds of transgenics that was up to 30% higher than in wild-type. These findings provide evidence that (1) the prevailing level of GPT1 abundance/activity is rate-limiting for the synthesis of starch in developing seeds, (2) GPT1 exerts a controlling function on assimilate partitioning into storage protein, and (3) GPT1 is essential for the differentiation of embryonic plastids and seed maturation.  相似文献   
153.
The thyroid gland has an exceptionally high selenium content, even during selenium deficiency. At least 11 selenoproteins are expressed, which may be involved in the protection of the gland against the high amounts of H2O2 produced during thyroid hormone biosynthesis. As determined here by in situ hybridization and Northern blotting experiments, glutathione peroxidases (GPx) 1 and 4 and selenoprotein P were moderately expressed, occurring selectively in the follicular cells and in leukocytes of germinal follicles of thyroids affected by Hashimoto's thyroiditis. Selenoprotein 15 was only marginally expressed and distributed over all cell types. GPx3 mRNA was exclusively localized to the thyrocytes, showed the highest expression levels and was down-regulated in 5 of 6 thyroid cancer samples as compared to matched normal controls. GPx3 could be extracted from thyroidal colloid by incubation with 0.5% sodium dodecyl sulfate indicating that this enzyme is (i) secreted into the follicular lumen and (ii) loosely attached to the colloidal thyroglobulin. These findings are consistent with a role of selenoproteins in the protection of the thyroid from possible damage by H2O2. Particularly, GPx3 might use excess H2O2 and catalyze the polymerization of thyroglobulin to the highly cross-linked storage form present in the colloid.  相似文献   
154.
Clinical data suggest that selenium (Se) supplementation decreases disease predisposition and severity and accelerates recovery in a variety of pathologies. Pre-supplementation Se levels and sex represent important determinants of these Se-dependent health effects. Accordingly, we previously reported on sexually dimorphic expression patterns of Se-dependent glutathione peroxidase 1, type I deiodinase, and selenoprotein P in young mice. In the present study we investigated whether these differences vary with age. The strong sexual dimorphic expression of hepatic type I deiodinase that was observed in young mice vanished both at the mRNA and enzyme activity level by 1 year of age. In contrast, the strong sex-specific differences in renal type I deiodinase mRNA expression were sustained with age. Accordingly, deiodinase enzymatic activities differed in male and female kidneys, largely independent of age [average of 6.8 vs. 15.7 pmol/(min mg) in males vs. females]. In parallel, hepatic Se concentrations and glutathione peroxidase activities increased in female mice compared to male littermates, establishing a new sexual dimorphism in liver. Thus, age represents another important modifier of the dynamic sex- and tissue-specific selenoprotein expression patterns. These data highlight again the unique physiological regulatory mechanisms that have evolved to control Se metabolism according to the actual needs of the organism.  相似文献   
155.
Here, we show that the murine neurodegenerative disease mdf (autosomal recessive mouse mutant 'muscle deficient') is caused by a loss-of-function mutation in Scyl1, disrupting the expression of N-terminal kinase-like protein, an evolutionarily conserved putative component of the nucleocytoplasmic transport machinery. Scyl1 is prominently expressed in neurons, and enriched at central nervous system synapses and neuromuscular junctions. We show that the pathology of mdf comprises cerebellar atrophy, Purkinje cell loss and optic nerve atrophy, and therefore defines a new animal model for neurodegenerative diseases with cerebellar involvement in humans.  相似文献   
156.
157.
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX.Plants are frequently exposed to different abiotic stresses, including high light (HL), UV irradiation, heat, cold, and drought. A component common to these stresses is the rapid formation of reactive oxygen species (ROS) as the result of metabolic dysbalances. A major ROS produced under moderate light (ML) and, in particular, HL photooxidative stress conditions was shown to be singlet oxygen, 1O2, that is produced in illuminated chloroplasts predominantly at the PSII (Triantaphylidès et al., 2008). Most of the singlet oxygen is quenched by carotenoids and tocopherols or reacts with galactolipids in thylakoid membranes, yielding galactolipid hydroperoxides (Zoeller et al., 2012; Farmer and Mueller, 2013). In addition, superoxide radicals, O2·, are produced predominantly at the PSI and rapidly dismutate to hydrogen peroxide (H2O2) either spontaneously or because of being catalyzed by superoxide dismutase. Hence, lipid peroxides and H2O2 are produced close to the photosystems and may damage thylakoid proteins. In this context, 2-Cys peroxiredoxin (PRX) enzymes have been implicated in the reductive detoxification of lipid peroxides and H2O2 (König et al., 2002).During photosynthesis, light energy absorbed by PSII is used to split water molecules, and the electrons are channeled from PSII through PSI to ferredoxin (Fd). As a result, electrons flow from water to Fd. The main electron sink reaction is the Fd NADP oxidoreductase-catalyzed production of NADPH that functions as an electron donor to reduce carbon dioxide to sugars. Under HL conditions, excessive excitation energy is dissipated into heat, which was indicated by nonphotochemical quenching of chlorophyll fluorescence. In addition, excessive photosynthetic electrons can be donated from PSI to O2, yielding O2· (Miyake, 2010). This process, the Mehler reaction, creates an alternative electron sink and electron flow. Superoxide anion radicals, O2·, can be dismutated to O2 and H2O2 by a thylakoid-attached copper/zinc superoxide dismutase (Cu/ZnSOD; Rizhsky et al., 2003). H2O2 can then be reduced to water by peroxidases. As a result, O2 molecules originating from the water-splitting process at PSII are reduced to water by electrons originating from PSI. This process is termed the water-water cycle (WWC) that is thought to protect the photosynthetic apparatus from excessive light and alleviate photoinhibition.In the classical WWC, the Mehler-ascorbate peroxidase (MAP) pathway, ascorbate peroxidases (APXs) have been considered as key enzymes in the reductive detoxification of H2O2 in chloroplasts (Kangasjärvi et al., 2008). APXs reduce H2O2 to water and oxidize ascorbate to monodehydroascorbate radicals. NADPH functions as an electron donor to regenerate ascorbate by monodehydroascorbate radical reductase. There are two functional APX homologs in plastids: a 33-kD stromal ascorbate peroxidase (sAPX) and a 38-kD thylakoid ascorbate peroxidase (tAPX). The latter tAPX is thought to reside close to the site of H2O2 generation at PSI. Surprisingly, knockout-tAPX mutants as well as double mutants lacking both the tAPX and the sAPX exhibited no visible symptoms of stress after long-term (1–14 d) HL (1.000 µmol photons m−2 s−1) exposure (Giacomelli et al., 2007; Kangasjärvi et al., 2008; Maruta et al., 2010). Moreover, the photosynthetic efficiency of PSII (as judged by the maximum photochemical efficiency of PSII in the dark-adapted state [Fv/Fm]), H2O2 production, antioxidant levels (ascorbate, glutathione, and tocopherols), protein oxidation, and anthocyanin accumulation were similar between light-stressed mutant and wild-type plants. Hence, other H2O2 detoxification mechanisms can efficiently compensate for the lack of the sAPX and tAPX detoxification system.In addition to APX, glutathione peroxidases and PRXs may reduce H2O2 to water. It has been postulated that, in the chloroplast, two highly homologous thylakoid-associated 2-Cys peroxiredoxins (2CPs), 2CPA and 2CPB, can create an alternative ascorbate-independent WWC (Dietz et al., 2006). In support of this concept, HL stress-acclimated tapx sapx double-mutant plants showed increased levels of 2-Cys PRX compared with wild-type plants (Kangasjärvi et al., 2008). Because the two plastidial 2CPA and 2CPB dynamically interact with the stromal side of thylakoid membranes and are capable of reducing peroxides, 2-Cys PRX enzymes may be involved in both H2O2 detoxification and reduction of lipid peroxides in thylakoids (König et al., 2002).The reaction mechanism of 2-Cys PRX is highly conserved and involves a Cys residue, which becomes transiently oxidized to sulphenic acid (termed the peroxidatic Cys residue), thereby reducing H2O2 to water. The sulphenic acid is subsequently attacked by a second Cys residue, termed resolving Cys residue, yielding an intermolecular disulfide bridge and water (Dietz, 2011).At high peroxide concentrations, the peroxidase function of 2-Cys PRX becomes inactivated through overoxidation, and excess H2O2 may function as a redox signal (Puerto-Galán et al., 2013). It has been postulated that 2-Cys PRXs function as a floodgate that allows H2O2 signaling only under oxidative stress conditions (Wood et al., 2003; Dietz, 2011; Puerto-Galán et al., 2013). In addition to its function as peroxidase, 2-Cys PRX may also serve as proximity-based thiol oxidases and chaperones (König et al., 2013).The genome of Arabidopsis (Arabidopsis thaliana) contains two 2CP genes. To study 2-Cys PRX function, transgenic plants with reduced 2-Cys PRX levels were generated by antisense suppression (Baier et al., 2000) as well as crossing of transfer DNA (T-DNA) insertion mutants (Pulido et al., 2010). The T-DNA insertion double mutant was shown to contain less than 5% of the wild-type content of 2CPA and no 2CPB. Hence, full knockout lines lacking both 2-Cys PRXs have not yet been established. Under standard growth conditions, 2-Cys PRX double mutants (similar to plastid APX-deficient plants) also did not show a photooxidative stress phenotype that might be because of compensation by alternative H2O2 reduction systems (Pulido et al., 2010). Because of the lack of a clear phenotype of the 2-Cys PRX double-knockdown mutant under ML conditions, the physiological functions of 2CPA and 2CPB remain to be elucidated.The main aim of this study was to identify the physiological function of 2CPA and 2CPB under HL stress conditions, when the WWC is of particular importance in protecting the photosynthetic apparatus from photooxidative damage. We investigated mutants completely deficient in 2-Cys PRX (2cpa 2cpb) or tAPX (tapx) and in addition, 2cpa 2cpb tapx triple knockout plants to study the extent of the functional overlap between these enzymes. Results suggest that 2-Cys PRXs are involved in a 2-Cys PRX-dependent WWC that seems to be more important in protecting the photosynthetic apparatus than the tAPX-dependent WWC, the MAP cycle.  相似文献   
158.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   
159.
The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral‐associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号