首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2125篇
  免费   183篇
  国内免费   1篇
  2023年   7篇
  2022年   16篇
  2021年   27篇
  2020年   16篇
  2019年   21篇
  2018年   23篇
  2017年   23篇
  2016年   44篇
  2015年   91篇
  2014年   105篇
  2013年   147篇
  2012年   171篇
  2011年   172篇
  2010年   132篇
  2009年   83篇
  2008年   125篇
  2007年   142篇
  2006年   116篇
  2005年   118篇
  2004年   89篇
  2003年   122篇
  2002年   72篇
  2001年   44篇
  2000年   26篇
  1999年   25篇
  1998年   16篇
  1997年   20篇
  1996年   15篇
  1995年   17篇
  1994年   21篇
  1993年   12篇
  1992年   17篇
  1991年   8篇
  1990年   9篇
  1989年   12篇
  1988年   14篇
  1987年   12篇
  1986年   16篇
  1984年   9篇
  1982年   14篇
  1981年   12篇
  1980年   6篇
  1979年   10篇
  1978年   11篇
  1977年   11篇
  1973年   7篇
  1972年   8篇
  1969年   6篇
  1967年   7篇
  1953年   6篇
排序方式: 共有2309条查询结果,搜索用时 15 毫秒
51.
For mammalian TRPM8, the amino acid residues asparagine-799 and aspartate-802 are essential for the stimulation of the channel by the synthetic agonist icilin. Both residues belong to the short sequence motif N-x-x-D within the transmembrane segment S3 highly conserved in the entire superfamily of voltage-dependent cation channels, among them TRPM8. Moreover, they are also conserved in the closely related TRPM2 channel, which is essentially voltage-independent. To analyze the differential roles of the motif for the voltage-dependent and voltage-independent gating, we performed reciprocal replacements of the asparagine and aspartate within the S3 motif in both channels, following the proposed idea that specific electrostatic interactions with other domains take place during gating. Wild-type and mutant channels were heterologeously expressed in HEK-293 cells and channel function was analyzed by whole-cell patch-clamp analysis as well as by Ca2+-imaging. Additionally, the expression of the channels in the plasma membrane was tested by Western blot analysis, in part after biotinylation. For the mutations of TRPM8, responses to menthol were only compromised if also the expression of the glycosylated channel isoform was prevented. In contrast, responses to cold were consistently and significantly attenuated but not completely abolished. For TRPM2, surface expression was not significantly affected by any of the mutations but channel function was only retained in one variant. Remarkably, this was the variant of which the corresponding mutation in TRPM8 exerted the most negative effects both on channel function and expression. Furthermore, we performed an exchange of the inner pair of residues of the N-x-x-D motif between the two channels, which proved deleterious for the functional expression of TRPM8 but ineffective on TRPM2. In conclusion, the N-x-x-D motif plays specific roles in TRPM8 and TRPM2, reflecting different requirements for voltage-dependent and voltage-independent channel gating.  相似文献   
52.

Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.

  相似文献   
53.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   
54.
55.
56.
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.  相似文献   
57.
Background aimsInvasive fungal infections, in particular, infections caused by Candida, Aspergillus and mucormycetes, are a major cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. Adoptive transfer of donor-derived anti-fungal T cells shows promise to restore immunity and to offer a cure. Because T cells recognize only specific epitopes, the low rate of patients in which the causal fungal pathogen can be identified and the considerable number of patients with co-infection with several genera or species of fungi significantly limit the application of adoptive immunotherapy.MethodsUsing the interferon-γ secretion assay, we isolated multi-specific human anti-fungal T cells after simultaneous stimulation with cellular extracts of Aspergillus fumigatus, Candida albicans and Rhizopus oryzae. Cells were phenotypically and functionally characterized by flow cytometry.ResultsOf a total of 1.1 × 109 peripheral blood mononuclear cells, a median number of 5.2 × 107 CD3+CD4+ T cells was generated within 12 days. This cell population consisted of activated memory TH1 cells and reproducibly responded to a multitude of Aspergillus spp., Candida spp. and mucormycetes with interferon-γ production. On re-stimulation, the generated T cells proliferated and enhanced anti-fungal activity of phagocytes and showed reduced alloreactivity compared with the original cell fraction.ConclusionsOur rapid and simple method of simultaneously generating functionally active multi-specific T cells that recognize a wide variety of medically relevant fungi may form the basis for future clinical trials investigating adoptive immunotherapy in allogeneic hematopoietic stem cell transplantation recipients with invasive fungal infection.  相似文献   
58.
59.

Background

Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction.

Methodology/Principal Findings

Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (26 pA) synaptic stimuli.

Conclusions/Significance

Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea.  相似文献   
60.
In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs) based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV), Puumala (PUUV), Seoul (SEOV), Saaremaa (SAAV), Dobrava (DOBV), Sin Nombre (SNV) or Andes (ANDV). For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n = 97); SEOV (China, n = 5); DOBV (Romania, n = 7); SNV (Canada, n = 23); ANDV (Argentina and Chile, n = 52). The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n = 177; 96%) and/or IgM (n = 131; 72%), while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99%) of the patient sera were IgG and 131 (71%) IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%). Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%). Of the 89 control sera, 2 (2%) showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号