全文获取类型
收费全文 | 1700篇 |
免费 | 139篇 |
国内免费 | 1篇 |
专业分类
1840篇 |
出版年
2023年 | 8篇 |
2022年 | 17篇 |
2021年 | 20篇 |
2020年 | 13篇 |
2019年 | 19篇 |
2018年 | 21篇 |
2017年 | 19篇 |
2016年 | 38篇 |
2015年 | 82篇 |
2014年 | 94篇 |
2013年 | 124篇 |
2012年 | 146篇 |
2011年 | 149篇 |
2010年 | 114篇 |
2009年 | 69篇 |
2008年 | 100篇 |
2007年 | 124篇 |
2006年 | 95篇 |
2005年 | 95篇 |
2004年 | 78篇 |
2003年 | 94篇 |
2002年 | 59篇 |
2001年 | 21篇 |
2000年 | 11篇 |
1999年 | 13篇 |
1998年 | 12篇 |
1997年 | 12篇 |
1996年 | 13篇 |
1995年 | 15篇 |
1994年 | 16篇 |
1993年 | 9篇 |
1992年 | 10篇 |
1991年 | 5篇 |
1990年 | 5篇 |
1989年 | 9篇 |
1988年 | 9篇 |
1986年 | 6篇 |
1984年 | 6篇 |
1982年 | 5篇 |
1981年 | 8篇 |
1980年 | 4篇 |
1979年 | 8篇 |
1977年 | 8篇 |
1973年 | 3篇 |
1972年 | 4篇 |
1969年 | 5篇 |
1967年 | 3篇 |
1958年 | 3篇 |
1953年 | 6篇 |
1950年 | 5篇 |
排序方式: 共有1840条查询结果,搜索用时 8 毫秒
91.
Background
The recently developed heterologous macrolide‐ (E.REX system) and streptogramin‐ (PIP system) responsive gene regulation systems show significant differences in their regulation performance in diverse cell lines.Methods
In order to provide optimal regulation modalities for a wide variety of mammalian cell lines, we have performed a detailed analysis of E.REX and PIP systems modified in (i) the transactivation domains of the antibiotic‐dependent transactivators, (ii) the type of minimal promoter used, and (iii) the spacing between the operator module and the minimal promoter.Results
These novel E.REX and PIP regulation components showed not only dramatically improved regulation performance in some cell types, but also enabled their use in cell lines which had previously been inaccessible to regulated transgene expression.Conclusions
Due to their modular set‐up the novel E.REX and PIP regulation systems presented here are most versatile and ready for future upgrades using different cell‐specific key regulation components. Copyright © 2002 John Wiley & Sons, Ltd.92.
Rasna R Walia Cornelia Caragea Benjamin A Lewis Fadi Towfic Michael Terribilini Yasser El-Manzalawy Drena Dobbs Vasant Honavar 《BMC bioinformatics》2012,13(1):1-20
Background
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data.Results
Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16?S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA).Conclusions
The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology. 相似文献93.
Fina A. S Kurreeman Leonid Padyukov Rute B Marques Steven J Schrodi Maria Seddighzadeh Gerrie Stoeken-Rijsbergen Annette H. M van der Helm-van Mil Cornelia F Allaart Willem Verduyn Jeanine Houwing-Duistermaat Lars Alfredsson Ann B Begovich Lars Klareskog Tom W. J Huizinga Rene E. M Toes 《PLoS medicine》2007,4(12)
94.
Roxana Cojocneanu Petric Cornelia Braicu Cristian Bassi Laura Pop Ionelia Taranu Nicolae Dragos Dan Dumitrascu Massimo Negrini Ioana Berindan-Neagoe 《PloS one》2015,10(9)
The use of animal models has facilitated numerous scientific developments, especially when employing “omics” technologies to study the effects of various environmental factors on humans. Our study presents a new bioinformatics pipeline suitable when the generated microarray data from animal models does not contain the necessary human gene name annotation. We conducted single color gene expression microarray on duodenum and spleen tissue obtained from pigs which have been exposed to zearalenone and Escherichia coli contamination, either alone or combined. By performing a combination of file format modifications and data alignments using various online tools as well as a command line environment, we performed the pig to human gene name extrapolation with an average yield of 58.34%, compared to 3.64% when applying more simple methods. In conclusion, while online data analysis portals on their own are of great importance in data management and assessment, our new pipeline provided a more effective approach for a situation which can be frequently encountered by researchers in the “omics” era. 相似文献
95.
96.
Martin Sievers Christoph Gaberthüel Cornelia Boesch Wolfgang Ludwig Michael Teuber 《FEMS microbiology letters》1995,126(2):123-126
Abstract The 16S rRNA sequences from the Gluconobacter species G. asaii G. cerinus and G. frateurii were determined and compared with homologous sequences from published databases and sequences of G. oxydans and Acetobacter species previously described [Sievers M., Ludwig W. and Teuber M. (1994) System. Appl. Microbiol. 17, 189–196]. The Gluconobacter species have unique 16S rRNA sequences and exhibit sequence similarity values of 97.4 to 99.1%, corresponding to 36 to 14 base differences. The phylogenetic tree inferring methods (distance matrix, maximum parsimony and maximum likelihood) show that the species of Gluconobacter form a coherent, closely related cluster. Based on the distance matrix method including Rhodopila globiformis as an outgroup reference organism, Gluconobacter is well separated from Acetobacter . 相似文献
97.
Lars Tramsen Stanislaw Schmidt Halvard Boenig Jean-Paul Latgé Cornelia Lass-Flörl Frauke Roeger Erhard Seifried Thomas Klingebiel Thomas Lehrnbecher 《Cytotherapy》2013,15(3):344-351
Background aimsInvasive fungal infections, in particular, infections caused by Candida, Aspergillus and mucormycetes, are a major cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation. Adoptive transfer of donor-derived anti-fungal T cells shows promise to restore immunity and to offer a cure. Because T cells recognize only specific epitopes, the low rate of patients in which the causal fungal pathogen can be identified and the considerable number of patients with co-infection with several genera or species of fungi significantly limit the application of adoptive immunotherapy.MethodsUsing the interferon-γ secretion assay, we isolated multi-specific human anti-fungal T cells after simultaneous stimulation with cellular extracts of Aspergillus fumigatus, Candida albicans and Rhizopus oryzae. Cells were phenotypically and functionally characterized by flow cytometry.ResultsOf a total of 1.1 × 109 peripheral blood mononuclear cells, a median number of 5.2 × 107 CD3+CD4+ T cells was generated within 12 days. This cell population consisted of activated memory TH1 cells and reproducibly responded to a multitude of Aspergillus spp., Candida spp. and mucormycetes with interferon-γ production. On re-stimulation, the generated T cells proliferated and enhanced anti-fungal activity of phagocytes and showed reduced alloreactivity compared with the original cell fraction.ConclusionsOur rapid and simple method of simultaneously generating functionally active multi-specific T cells that recognize a wide variety of medically relevant fungi may form the basis for future clinical trials investigating adoptive immunotherapy in allogeneic hematopoietic stem cell transplantation recipients with invasive fungal infection. 相似文献
98.
Kyriaki Chatzivasileiou Cornelia A. Lux Gustav Steinhoff Hermann Lang 《Journal of cellular and molecular medicine》2013,17(6):766-773
Periodontitis is a bacterially induced chronic inflammatory disease. Dental follicle progenitor cells (DFPCs) have been proposed as biological graft for periodontal regenerative therapies. The potential impact of bacterial toxins on DFPCs properties is still poorly understood. The aim of this study was to investigate whether DFPCs are able to sense and respond to lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major periopathogenic bacterium. Specifically, we hypothesized that LPS could influence the migratory capacity and IL‐6 secretion of DFPCs. DFPCs properties were compared to bone marrow mesenchymal stem cells (BMSCs), a well‐studied class of adult stem cells. The analysis by flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels of both toll‐like receptor (TLR) 2 and 4. The TLR4 mRNA expression was down‐regulated in response to LPS in both cell populations, while on protein level TLR4 was significantly up‐regulated on BMSCs. The TLR2 expression was not influenced by the LPS treatment in both DFPCs and BMSCs. The migratory efficacy of LPS‐treated DFPCs was evaluated by in vitro scratch wound assays and found to be significantly increased. Furthermore, we assayed the secretion of interleukin‐6 (IL‐6), a potent stimulator of cell migration. Interestingly, the levels of IL‐6 secretion of DFPCs and BMSCs remained unchanged after the LPS treatment. Taken together, these results suggest that DFPCs are able to sense and respond to P. gingivalis LPS. Our study provides new insights into understanding the physiological role of dental‐derived progenitor cells in sites of periodontal infection. 相似文献
99.
John M. Edwards Jed Long Cornelia H. de Moor Jonas Emsley Mark S. Searle 《Nucleic acids research》2013,41(14):7153-7166
The CUG-BP, Elav-like family (CELF) of RNA-binding proteins control gene expression at a number of different levels by regulating pre-mRNA splicing, deadenylation and mRNA stability. We present structural insights into the binding selectivity of CELF member 1 (CELF1) for GU-rich mRNA target sequences of the general form 5′-UGUNxUGUNyUGU and identify a high affinity interaction (Kd ∼ 100 nM for x = 2 and y = 4) with simultaneous binding of all three RNA recognition motifs within a single 15-nt binding element. RNA substrates spin-labelled at either the 3′ or 5′ terminus result in differential nuclear magnetic resonance paramagnetic relaxation enhancement effects, which are consistent with a non-sequential 2-1-3 arrangement of the three RNA recognition motifs on UGU sites in a 5′ to 3′ orientation along the RNA target. We further demonstrate that CELF1 binds to dispersed single-stranded UGU sites at the base of an RNA hairpin providing a structural rationale for recognition of CUG expansion repeats and splice site junctions in the regulation of alternative splicing. 相似文献