首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1697篇
  免费   140篇
  国内免费   1篇
  2023年   6篇
  2022年   17篇
  2021年   20篇
  2020年   13篇
  2019年   19篇
  2018年   21篇
  2017年   19篇
  2016年   38篇
  2015年   82篇
  2014年   94篇
  2013年   124篇
  2012年   146篇
  2011年   149篇
  2010年   114篇
  2009年   69篇
  2008年   100篇
  2007年   124篇
  2006年   95篇
  2005年   95篇
  2004年   78篇
  2003年   94篇
  2002年   59篇
  2001年   21篇
  2000年   11篇
  1999年   13篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   15篇
  1994年   16篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   9篇
  1986年   6篇
  1984年   6篇
  1982年   5篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1977年   8篇
  1973年   3篇
  1972年   4篇
  1969年   5篇
  1967年   3篇
  1958年   3篇
  1953年   6篇
  1950年   5篇
排序方式: 共有1838条查询结果,搜索用时 15 毫秒
141.
Here, we show that the murine neurodegenerative disease mdf (autosomal recessive mouse mutant 'muscle deficient') is caused by a loss-of-function mutation in Scyl1, disrupting the expression of N-terminal kinase-like protein, an evolutionarily conserved putative component of the nucleocytoplasmic transport machinery. Scyl1 is prominently expressed in neurons, and enriched at central nervous system synapses and neuromuscular junctions. We show that the pathology of mdf comprises cerebellar atrophy, Purkinje cell loss and optic nerve atrophy, and therefore defines a new animal model for neurodegenerative diseases with cerebellar involvement in humans.  相似文献   
142.
143.
Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX.Plants are frequently exposed to different abiotic stresses, including high light (HL), UV irradiation, heat, cold, and drought. A component common to these stresses is the rapid formation of reactive oxygen species (ROS) as the result of metabolic dysbalances. A major ROS produced under moderate light (ML) and, in particular, HL photooxidative stress conditions was shown to be singlet oxygen, 1O2, that is produced in illuminated chloroplasts predominantly at the PSII (Triantaphylidès et al., 2008). Most of the singlet oxygen is quenched by carotenoids and tocopherols or reacts with galactolipids in thylakoid membranes, yielding galactolipid hydroperoxides (Zoeller et al., 2012; Farmer and Mueller, 2013). In addition, superoxide radicals, O2·, are produced predominantly at the PSI and rapidly dismutate to hydrogen peroxide (H2O2) either spontaneously or because of being catalyzed by superoxide dismutase. Hence, lipid peroxides and H2O2 are produced close to the photosystems and may damage thylakoid proteins. In this context, 2-Cys peroxiredoxin (PRX) enzymes have been implicated in the reductive detoxification of lipid peroxides and H2O2 (König et al., 2002).During photosynthesis, light energy absorbed by PSII is used to split water molecules, and the electrons are channeled from PSII through PSI to ferredoxin (Fd). As a result, electrons flow from water to Fd. The main electron sink reaction is the Fd NADP oxidoreductase-catalyzed production of NADPH that functions as an electron donor to reduce carbon dioxide to sugars. Under HL conditions, excessive excitation energy is dissipated into heat, which was indicated by nonphotochemical quenching of chlorophyll fluorescence. In addition, excessive photosynthetic electrons can be donated from PSI to O2, yielding O2· (Miyake, 2010). This process, the Mehler reaction, creates an alternative electron sink and electron flow. Superoxide anion radicals, O2·, can be dismutated to O2 and H2O2 by a thylakoid-attached copper/zinc superoxide dismutase (Cu/ZnSOD; Rizhsky et al., 2003). H2O2 can then be reduced to water by peroxidases. As a result, O2 molecules originating from the water-splitting process at PSII are reduced to water by electrons originating from PSI. This process is termed the water-water cycle (WWC) that is thought to protect the photosynthetic apparatus from excessive light and alleviate photoinhibition.In the classical WWC, the Mehler-ascorbate peroxidase (MAP) pathway, ascorbate peroxidases (APXs) have been considered as key enzymes in the reductive detoxification of H2O2 in chloroplasts (Kangasjärvi et al., 2008). APXs reduce H2O2 to water and oxidize ascorbate to monodehydroascorbate radicals. NADPH functions as an electron donor to regenerate ascorbate by monodehydroascorbate radical reductase. There are two functional APX homologs in plastids: a 33-kD stromal ascorbate peroxidase (sAPX) and a 38-kD thylakoid ascorbate peroxidase (tAPX). The latter tAPX is thought to reside close to the site of H2O2 generation at PSI. Surprisingly, knockout-tAPX mutants as well as double mutants lacking both the tAPX and the sAPX exhibited no visible symptoms of stress after long-term (1–14 d) HL (1.000 µmol photons m−2 s−1) exposure (Giacomelli et al., 2007; Kangasjärvi et al., 2008; Maruta et al., 2010). Moreover, the photosynthetic efficiency of PSII (as judged by the maximum photochemical efficiency of PSII in the dark-adapted state [Fv/Fm]), H2O2 production, antioxidant levels (ascorbate, glutathione, and tocopherols), protein oxidation, and anthocyanin accumulation were similar between light-stressed mutant and wild-type plants. Hence, other H2O2 detoxification mechanisms can efficiently compensate for the lack of the sAPX and tAPX detoxification system.In addition to APX, glutathione peroxidases and PRXs may reduce H2O2 to water. It has been postulated that, in the chloroplast, two highly homologous thylakoid-associated 2-Cys peroxiredoxins (2CPs), 2CPA and 2CPB, can create an alternative ascorbate-independent WWC (Dietz et al., 2006). In support of this concept, HL stress-acclimated tapx sapx double-mutant plants showed increased levels of 2-Cys PRX compared with wild-type plants (Kangasjärvi et al., 2008). Because the two plastidial 2CPA and 2CPB dynamically interact with the stromal side of thylakoid membranes and are capable of reducing peroxides, 2-Cys PRX enzymes may be involved in both H2O2 detoxification and reduction of lipid peroxides in thylakoids (König et al., 2002).The reaction mechanism of 2-Cys PRX is highly conserved and involves a Cys residue, which becomes transiently oxidized to sulphenic acid (termed the peroxidatic Cys residue), thereby reducing H2O2 to water. The sulphenic acid is subsequently attacked by a second Cys residue, termed resolving Cys residue, yielding an intermolecular disulfide bridge and water (Dietz, 2011).At high peroxide concentrations, the peroxidase function of 2-Cys PRX becomes inactivated through overoxidation, and excess H2O2 may function as a redox signal (Puerto-Galán et al., 2013). It has been postulated that 2-Cys PRXs function as a floodgate that allows H2O2 signaling only under oxidative stress conditions (Wood et al., 2003; Dietz, 2011; Puerto-Galán et al., 2013). In addition to its function as peroxidase, 2-Cys PRX may also serve as proximity-based thiol oxidases and chaperones (König et al., 2013).The genome of Arabidopsis (Arabidopsis thaliana) contains two 2CP genes. To study 2-Cys PRX function, transgenic plants with reduced 2-Cys PRX levels were generated by antisense suppression (Baier et al., 2000) as well as crossing of transfer DNA (T-DNA) insertion mutants (Pulido et al., 2010). The T-DNA insertion double mutant was shown to contain less than 5% of the wild-type content of 2CPA and no 2CPB. Hence, full knockout lines lacking both 2-Cys PRXs have not yet been established. Under standard growth conditions, 2-Cys PRX double mutants (similar to plastid APX-deficient plants) also did not show a photooxidative stress phenotype that might be because of compensation by alternative H2O2 reduction systems (Pulido et al., 2010). Because of the lack of a clear phenotype of the 2-Cys PRX double-knockdown mutant under ML conditions, the physiological functions of 2CPA and 2CPB remain to be elucidated.The main aim of this study was to identify the physiological function of 2CPA and 2CPB under HL stress conditions, when the WWC is of particular importance in protecting the photosynthetic apparatus from photooxidative damage. We investigated mutants completely deficient in 2-Cys PRX (2cpa 2cpb) or tAPX (tapx) and in addition, 2cpa 2cpb tapx triple knockout plants to study the extent of the functional overlap between these enzymes. Results suggest that 2-Cys PRXs are involved in a 2-Cys PRX-dependent WWC that seems to be more important in protecting the photosynthetic apparatus than the tAPX-dependent WWC, the MAP cycle.  相似文献   
144.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   
145.
146.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   
147.
Membrane fusion at vacuoles requires a consecutive action of the HOPS tethering complex, which is recruited by the Rab GTPase Ypt7, and vacuolar SNAREs to drive membrane fusion. It is assumed that the Sec1/Munc18-like Vps33 within the HOPS complex is largely responsible for SNARE chaperoning. Here, we present direct evidence for HOPS binding to SNAREs and the Habc domain of the Vam3 SNARE protein, which may explain its function during fusion. We show that HOPS interacts strongly with the Vam3 Habc domain, assembled Q-SNAREs, and the R-SNARE Ykt6, but not the Q-SNARE Vti1 or the Vam3 SNARE domain. Electron microscopy combined with Nanogold labeling reveals that the binding sites for vacuolar SNAREs and the Habc domain are located in the large head of the HOPS complex, where Vps16 and Vps33 have been identified before. Competition experiments suggest that HOPS bound to the Habc domain can still interact with assembled Q-SNAREs, whereas Q-SNARE binding prevents recognition of the Habc domain. In agreement, membranes carrying Vam3ΔHabc fuse poorly unless an excess of HOPS is provided. These data suggest that the Habc domain of Vam3 facilitates the assembly of the HOPS/SNARE machinery at fusion sites and thus supports efficient membrane fusion.  相似文献   
148.
149.
Offset responses upon termination of a stimulus are crucial for perceptual grouping and gap detection. These gaps are key features of vocal communication, but an ionic mechanism capable of generating fast offsets from auditory stimuli has proven elusive. Offset firing arises in the brainstem superior paraolivary nucleus (SPN), which receives powerful inhibition during sound and converts this into precise action potential (AP) firing upon sound termination. Whole-cell patch recording in?vitro showed that offset firing was triggered by IPSPs rather than EPSPs. We show that AP firing can emerge from inhibition through integration of large IPSPs, driven by an extremely negative chloride reversal potential (E(Cl)), combined with a large hyperpolarization-activated nonspecific cationic current (I(H)), with a secondary contribution from a T-type calcium conductance (I(TCa)). On activation by the IPSP, I(H) potently accelerates the membrane time constant, so when the sound ceases, a rapid repolarization triggers multiple offset APs that match onset timing accuracy.  相似文献   
150.
Although activation and subsequent expansion of naive CD4(+) T cells within lymph nodes is well characterized, the fate of T effector cells activated within peripheral tissues during secondary reactions is poorly defined. Therefore, we studied the recruitment, proliferation and egress of antigen-specific Th1 effector cells in comparison with nonspecific Th1 cells throughout a delayed-type hypersensitivity reaction (DTH). Although we observed a high turnover of Th1 effector cells with unspecific high-rate recruitment and CCR7-dependent egress from the inflamed tissue in the early, acute DTH phase, a strong, selective accumulation of antigen-specific T cells occurred during the chronic, late DTH phase. This was mainly based on local proliferation of CD4(+) effector cells within the DTH tissue and concomitant retention. Considering the strong CCR7-dependent Th cell egress found in this model, the reduced CCR7 expression on antigen-specific T cells isolated from late-phase DTH tissue most likely contributes to the retention of these cells within the tissue. Thus, peripheral tissues can support not only the proliferation of CD8(+) T cells, as recently shown, but also that of CD4(+) T effector cells, forming a pool of tissue-resident T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号