首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1786篇
  免费   164篇
  2024年   2篇
  2023年   7篇
  2022年   15篇
  2021年   32篇
  2020年   27篇
  2019年   17篇
  2018年   26篇
  2017年   20篇
  2016年   44篇
  2015年   83篇
  2014年   91篇
  2013年   119篇
  2012年   163篇
  2011年   150篇
  2010年   86篇
  2009年   107篇
  2008年   118篇
  2007年   140篇
  2006年   100篇
  2005年   103篇
  2004年   107篇
  2003年   88篇
  2002年   82篇
  2001年   14篇
  2000年   20篇
  1999年   18篇
  1998年   29篇
  1997年   12篇
  1996年   17篇
  1995年   16篇
  1994年   14篇
  1993年   15篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1950条查询结果,搜索用时 15 毫秒
21.
Summary The fluorinated pyrimidines 5-fluorouracil (5FU) and 5-fluorocytosine (5FC) induce the cytoplasmic petite mutation in the yeastSaccharomyces cerevisiae with high efficiency. It was found that in order to induce the mutation, 5FC must first be deaminated to 5FU. However, mutagenesis does not depend on the further conversion of 5FU to its deoxyriboside (5FUDR) and subsequent blockade of intracellular thymidine synthesis, since 5FUDR itself was found not to be mutagenic, and 5FU-induced mutagenesis was not antagonised by supplying thymidine monophosphate (dTMP) to a dTMP permeable strain. In any case, observations of the molecular changes accompanying petite induction in log phase cells ruled out the possibility that mutagenesis resulted simply from the dilution out of replication-blocked mitDNA molecules, since the appearance of mutants coincided with the synthesis of altered mitDNA molecules. In different strains, the resulting defective molecules were either maintained, giving rise to suppressive petites, or completely degraded, to give pure clones of neutral 0 mutants. It is suggested that this degradative process was a consequence of the incorporation of 5FU into RNA.  相似文献   
22.
Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53–TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.  相似文献   
23.
Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa.

Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. Ultrastructure expansion microscopy on mouse retina reveals the presence of a novel structure inside the photoreceptor connecting cilium, the inner scaffold, that protects the outer segment against degeneration.  相似文献   
24.
Proteomics strategies based on nanoflow (nano-) LC-MS/MS allow the identification of hundreds to thousands of proteins in complex mixtures. When combined with protein isotopic labeling, quantitative comparison of the proteome from different samples can be achieved using these approaches. However, bioinformatics analysis of the data remains a bottleneck in large scale quantitative proteomics studies. Here we present a new software named Mascot File Parsing and Quantification (MFPaQ) that easily processes the results of the Mascot search engine and performs protein quantification in the case of isotopic labeling experiments using either the ICAT or SILAC (stable isotope labeling with amino acids in cell culture) method. This new tool provides a convenient interface to retrieve Mascot protein lists; sort them according to Mascot scoring or to user-defined criteria based on the number, the score, and the rank of identified peptides; and to validate the results. Moreover the software extracts quantitative data from raw files obtained by nano-LC-MS/MS, calculates peptide ratios, and generates a non-redundant list of proteins identified in a multisearch experiment with their calculated averaged and normalized ratio. Here we apply this software to the proteomics analysis of membrane proteins from primary human endothelial cells (ECs), a cell type involved in many physiological and pathological processes including chronic inflammatory diseases such as rheumatoid arthritis. We analyzed the EC membrane proteome and set up methods for quantitative analysis of this proteome by ICAT labeling. EC microsomal proteins were fractionated and analyzed by nano-LC-MS/MS, and database searches were performed with Mascot. Data validation and clustering of proteins were performed with MFPaQ, which allowed identification of more than 600 unique proteins. The software was also successfully used in a quantitative differential proteomics analysis of the EC membrane proteome after stimulation with a combination of proinflammatory mediators (tumor necrosis factor-alpha, interferon-gamma, and lymphotoxin alpha/beta) that resulted in the identification of a full spectrum of EC membrane proteins regulated by inflammation.  相似文献   
25.
Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo   总被引:10,自引:0,他引:10  
CD4+CD25+ regulatory T cells have been extensively studied during the last decade, but how these cells exert their regulatory function on pathogenic effector T cells remains to be elucidated. Naive CD4+ T cells transferred into T cell-deficient mice strongly expand and rapidly induce inflammatory bowel disease (IBD). Onset of this inflammatory disorder depends on IFN-gamma production by expanding CD4+ T cells. Coinjection of CD4+CD25+ regulatory T cells protects recipient mice from IBD. In this study, we show that CD4+CD25+ regulatory T cells do not affect the initial activation/proliferation of injected naive T cells as well as their differentiation into Th1 effectors. Moreover, naive T cells injected together with CD4+CD25+ regulatory T cells into lymphopenic hosts are still able to respond to stimuli in vitro when regulatory T cells are removed. In these conditions, they produce as much IFN-gamma as before injection or when injected alone. Finally, when purified, they are able to induce IBD upon reinjection into lymphopenic hosts. Thus, prevention of IBD by CD4+CD25+ regulatory T cells is not due to deletion of pathogenic T cells, induction of a non reactive state (anergy) among pathogenic effector T cells, or preferential induction of Th2 effectors rather than Th1 effectors; rather, it results from suppression of T lymphocyte effector functions, leading to regulated responses to self.  相似文献   
26.
27.
We have developed a system for stable germline transformation in the silkworm Bombyx mori L. using piggyBac, a transposon discovered in the lepidopteran Trichoplusia ni. The transformation constructs consist of the piggyBac inverted terminal repeats flanking a fusion of the B. mori cytoplasmic actin gene BmA3 promoter and the green fluorescent protein (GFP). A nonautonomous helper plasmid encodes the piggyBac transposase. The reporter gene construct was coinjected into preblastoderm eggs of two strains of B. mori. Approximately 2% of the individuals in the G1 broods expressed GFP. DNA analyses of GFP-positive G1 silkworms revealed that multiple independent insertions occurred frequently. The transgene was stably transferred to the next generation through normal Mendelian inheritance. The presence of the inverted terminal repeats of piggyBac and the characteristic TTAA sequence at the borders of all the analyzed inserts confirmed that transformation resulted from precise transposition events. This efficient method of stable gene transfer in a lepidopteran insect opens the way for promising basic research and biotechnological applications.  相似文献   
28.
Sb(III) oxidation was documented in an Agrobacterium tumefaciens isolate that can also oxidize As(III). Equivalent Sb(III) oxidation rates were observed in the parental wild-type organism and in two well-characterized mutants that cannot oxidize As(III) for fundamentally different reasons. Therefore, despite the literature suggesting that Sb(III) and As(III) may be biochemical analogs, Sb(III) oxidation is catalyzed by a pathway different than that used for As(III). Sb(III) and As(III) oxidation was also observed for an eukaryotic acidothermophilic alga belonging to the order Cyanidiales, implying that the ability to oxidize metalloids may be phylogenetically widespread.  相似文献   
29.
In 2001, Urbani and Palmer published a review of the epidemiological situation of helminthiases in the countries of the Western Pacific Region of the World Health Organization indicating the control needs in the region. Six years after this inspiring article, large-scale preventive chemotherapy for the control of helminthiasis has scaled up dramatically in the region. This paper analyzes the most recent published and unpublished country information on large-scale preventive chemotherapy and summarizes the progress made since 2000. Almost 39 million treatments were provided in 2006 in the region for the control of helminthiasis: nearly 14 million for the control of lymphatic filariasis, more than 22 million for the control of soil-transmitted helminthiasis, and over 2 million for the control of schistosomiasis. In general, control of these helminthiases is progressing well in the Mekong countries and Pacific Islands. In China, despite harboring the majority of the helminth infections of the region, the control activities have not reached the level of coverage of countries with much more limited financial resources. The control of food-borne trematodes is still limited, but pilot activities have been initiated in China, Lao People's Democratic Republic, and Vietnam.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号