首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2223篇
  免费   243篇
  国内免费   2篇
  2468篇
  2023年   7篇
  2022年   18篇
  2021年   35篇
  2020年   29篇
  2019年   22篇
  2018年   28篇
  2017年   25篇
  2016年   57篇
  2015年   100篇
  2014年   102篇
  2013年   128篇
  2012年   180篇
  2011年   170篇
  2010年   102篇
  2009年   118篇
  2008年   138篇
  2007年   150篇
  2006年   114篇
  2005年   116篇
  2004年   119篇
  2003年   101篇
  2002年   98篇
  2001年   34篇
  2000年   33篇
  1999年   32篇
  1998年   33篇
  1997年   17篇
  1996年   23篇
  1995年   20篇
  1994年   17篇
  1993年   23篇
  1992年   16篇
  1991年   24篇
  1990年   14篇
  1989年   10篇
  1988年   13篇
  1987年   15篇
  1986年   12篇
  1985年   17篇
  1984年   8篇
  1983年   15篇
  1982年   14篇
  1980年   10篇
  1979年   11篇
  1978年   7篇
  1977年   8篇
  1976年   7篇
  1970年   11篇
  1968年   9篇
  1967年   11篇
排序方式: 共有2468条查询结果,搜索用时 11 毫秒
21.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   
22.
23.
24.
Screening over 100 isolates from human faeces for cellulolytic activity led to the isolation of a weakly cellulolytic anaerobic, curved, motile bacterium which produced H2, lactate and butyrate from wheatbran. The mol% of G + C in the DNA was 39–42. These properties, together with the Gram-positive cell wall ultrastructure and SDS-PAGE profile, are consistent with the genus Butyrivibrio. The isolate is believed to be the most active wheatbran-degrading bacterium so far described.  相似文献   
25.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   
26.
27.
28.
When compound I of chloroperoxidase is formed from the native enzyme the absorption peak in the Soret region diminishes in intensity, and shifts to a maximum absorbance at 367 nm. This unusual Soret spectrum decreases in intensity in a linear fashion as the wavelength increases. The first visible spectrum of chloroperoxidase compound I is reported which has a peak at 689 nm as its most prominent feature.  相似文献   
29.
Abstract— Alanine aminotransferase activity in subcellular fractions of rat brains was investigated during ontogenic development. The activity rose from the prenatal period until adulthood, the highest increase being observed during the period of morphological metabolic and functional maturation of the brain. The rise of the total activity was due predominantly to a rise in the activity of the cytosblic enzyme; the activity of the mitochondrial enzyme did not change markedly during ontogeny. CI-ions and elevated temperature (55°C) inhibited the activity only of the mitochondrial enzyme. Raised temperature stimulated the activity of the cytosolic enzyme while CI-ions did not influence its activity. Our results indicate that 2 alanine aminotransferase isoenzlmes are already present in the rat brain in the prenatal period. It is assumed that the cytosolic enzyme is involved in the regulation of tissue glycol)sis and alanine formation, while the mitochondrial enzyme plays a role in the amino nitrogen transport between mitochondria and cytosol.  相似文献   
30.
Hyperglycemia and skeletal muscle insulin resistance coexist in uncontrolled type 2 diabetes mellitus. Similar defects in insulin action were observed in glucose-infused, normal rats, a model of glucose toxicity. In these rats insulin-stimulated glucose uptake by skeletal muscle was decreased due to a post-receptor defect. We investigated whether the impaired glucose uptake resulted from a decrease in the abundance of the predominant muscle glucose transporter (GLUT4) mRNA and/or protein. GLUT4 protein abundance in the hyperglycemic rats was not different from the control group despite a 50% decrease in muscle glucose uptake. GLUT4 mRNA abundance was 2.5-fold greater in the hyperglycemic rats as compared to the control animals. We conclude that the coexistence of hyperglycemia and hyperinsulinemia results in (1) a defect in GLUT4 compartmentalization and/or functional activity and (2) a divergence between GLUT4 mRNA levels and translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号