首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   70篇
  2023年   3篇
  2022年   8篇
  2021年   20篇
  2020年   14篇
  2019年   15篇
  2018年   6篇
  2017年   16篇
  2016年   19篇
  2015年   45篇
  2014年   34篇
  2013年   51篇
  2012年   57篇
  2011年   44篇
  2010年   52篇
  2009年   32篇
  2008年   58篇
  2007年   41篇
  2006年   30篇
  2005年   36篇
  2004年   37篇
  2003年   32篇
  2002年   22篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   11篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1976年   4篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1925年   1篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
91.
92.
ARR22 (At3g04280) is a novel Type A response regulator whose function in Arabidopsis is unknown. RT-PCR analysis has shown that expression of the gene takes place in flowers and developing pods with the tissues accumulating different proportions of splice variants. Spatial analysis of expression, using ARR22::GUS plants as a marker, has revealed that the reporter protein accumulates specifically at the junction between the funiculus and the chalazal tissue. Expression can be up-regulated at this location by wounding the developing seed. A detailed analysis has failed to detect ARR22 expression at any other sites and, to support this assertion, the only evidence for tissue ablation in ARR22::Barnase plants is during seed development, with the consequence that embryo growth is attenuated. Ectopic expression of ARR22, driven by either the CaMV 35S or the pea plastocyanin (PPC) promoters, resulted in the generation of plants exhibiting extremely stunted root and shoot growth. No viable progeny could be isolated from the PPC::ARR22 transgenic lines. An RT-PCR analysis of a recently annotated gene (ARR24-At5g26594), that exhibits 66% amino acid similarity to ARR22, has shown that expression is also predominantly in floral and silique tissues. Examination of ARR24::GUS plants has revealed that the activity of the promoter is primarily restricted to pollen grains indicating that this gene is unlikely to display an overlapping function with ARR22. Analyses of individual KO lines of either ARR22 or ARR24 have failed to identify a mutant phenotype under the growth conditions employed and the double knockout ARR22/ARR24 line is also indistinguishable from wild-type plants. These results are discussed in the light of the proposed role of response regulators in plant growth and development.  相似文献   
93.
94.
Great apes are the closest living relatives of humans. Physiological similarities between great apes and humans provide clues to identify which biological features in humans are primitive or derived from great apes. Vitamin A (VA) and carotenoid metabolism have been only partially studied in great apes, and comparisons between great apes and humans are not available. We aimed to investigate VA and carotenoid intake and plasma concentrations in great apes living in captivity, and to compare them to healthy humans. Dietary intakes of humans (n = 20) and, among the great apes, chimpanzees (n = 15) and orangutans (n = 5) were calculated. Plasma retinol (ROH), retinol-binding protein (RBP), retinyl esters, and major carotenoids were analyzed. The great ape diet was higher in VA than in humans, due to high intake of provitamin A carotenoids. Plasma ROH concentrations in great apes were similar to those in humans, but retinyl esters were higher in great apes than in humans. Differences in plasma carotenoid concentrations were observed between great apes and humans. Lutein was the main carotenoid in great apes, while beta-carotene was the main carotenoid for humans. RBP concentrations did not differ between great apes and humans. The molar ratio of ROH to RBP was close to 1.0 in both great apes and humans. In conclusion, great apes show homeostatic ROH regulation, with high but physiological retinyl esters circulating in plasma. Furthermore, great apes show great selectivity in their plasmatic carotenoid concentration, which is not explained by dietary intake.  相似文献   
95.
Neuron–astroglia interactions play a key role in several events of brain development, such as neuronal generation, migration, survival, and differentiation; axonal growth; and synapse formation and function. While there is compelling evidence of the effects of astrocyte factors on neurons, their effects on astrocytes have not been fully determined. In this review, we will focus on the role of neurons in astrocyte generation and maturation. Further, we highlight the great heterogeneity and diversity of astroglial and neural progenitors such as radial glia cells, and discuss the importance of the variety of cellular interactions in controlling the structural and functional organization of the brain. Finally, we present recent data on a new role of astrocytes in neuronal maturation, as mediators of the action of biolipids in the cerebral cortex. We will argue that the functional architecture of the brain depends on an intimate neuron-glia partnership, by briefly discussing the emerging view of how neuron-astrocyte dysfunctions might be associated with neurodegenerative diseases and neurological disorders.  相似文献   
96.
The amyloid precursor protein (APP) is thought to be neuroprotective following traumatic brain injury (TBI), although definitive evidence at moderate to severe levels of injury is lacking. In the current study, we investigated histological and functional outcomes in APP-/- mice compared with APP+/+ mice following a moderate focal injury, and whether administration of sAPPα restored the outcomes in knockout animals back to the wildtype state. Following moderate controlled cortical impact injury, APP-/- mice demonstrated greater impairment in motor and cognitive outcome as determined by the ledged beam and Barnes Maze tests respectively (p < 0.05). This corresponded with the degree of neuronal damage, with APP-/- mice having significantly greater lesion volume (25.0 ± 1.6 vs. 20.3 ± 1.6%, p < 0.01) and hippocampal damage, with less remaining CA neurons (839 ± 245 vs. 1353 ± 142 and 1401 ± 263). This was also associated with an impaired neuroreparative response, with decreased GAP-43 immunoreactivity within the cortex around the lesion edge compared with APP+/+ mice. The deficits observed in the APP-/- mice related to a lack of sAPPα, as treatment with exogenously added sAPPα post-injury improved APP-/- mice histological and functional outcome to the point that they were no longer significantly different to APP+/+ mice (p < 0.05). This study shows that endogenous APP is potentially protective at moderate levels of TBI, and that this neuroprotective activity is related to the presence of sAPPα. Importantly, it indicates that the mechanism of action of exogenously added sAPPα is independent of the presence of endogenous APP.  相似文献   
97.
The ability to measure and interpret variables associated with feeding behavior and food intake is essential to a variety of nonhuman primate study modalities. The development of a technique to accurately and efficiently measure food intake and meal patterning in captivity will enhance both the interpretation of foraging behavior in the wild as well as our ability to model clinically relevant human feeding pathologies. In this study, we successfully developed the use of a rodent lickometer system to monitor meal patterning in captive common marmosets. We describe the modifications necessary for this type of instrumentation to be used successfully with marmosets. We define variables of interest that relate to both previous rodent literature and human clinical measures. Finally, we relate our findings to potential translational value for both primate field research and biomedical applications. Am. J. Primatol. 74:901‐914, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
98.
Rho proteins are key regulators of cellular morphogenesis, but their function in filamentous fungi is poorly understood. By generating conditional rho‐1 mutants, we dissected the function of the essential GTPase RHO1 in cell polarization and maintenance of cell wall integrity in Neurospora crassa. We identified NCU00668/RGF1 as RHO1‐specific exchange factor, which controls actin organization and the cell wall integrity MAK1 MAP kinase pathway through the direct interaction of active RHO1 with the formin BNI1 and PKC1 respectively. The activity of RGF1 is controlled by an intramolecular interaction of its DEP and GEF domains that blocks the activation of the GTPase. Moreover, the N‐terminal region including the DEP domain of RGF1 interacts with the plasma membrane sensor NCU06910/WSC1, potentially to activate the cell wall integrity pathway. RHO1 also functions as regulatory subunit of the glucan synthase. N. crassa possesses a second GTPase, RHO2, that is highly homologous to RHO1. RHO2 is of minor importance for growth and does not interact with BNI1. Conditional rho‐1;rho‐2 double mutants display strong synthetic growth and cell polarity defects. We show that RHO2 does not regulate glucan synthase activity and the actin cytoskeleton, but physically interacts with PKC1 to regulate the cell wall integrity pathway.  相似文献   
99.
Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.  相似文献   
100.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas; CRISPR associated) are a bacterial defense mechanism against extra-chromosomal elements. CRISPR/Cas systems are distinct from other known defense mechanisms insofar as they provide acquired and heritable immunity. Resistance is accomplished in multiple stages in which the Cas proteins provide the enzymatic machinery. Importantly, subtype-specific proteins have been shown to form complexes in combination with small RNAs, which enable sequence-specific targeting of foreign nucleic acids. We used Pectobacterium atrosepticum, a plant pathogen that causes soft-rot and blackleg disease in potato, to investigate protein-protein interactions and complex formation in the subtype I-F CRISPR/Cas system. The P. atrosepticum CRISPR/Cas system encodes six proteins: Cas1, Cas3, and the four subtype specific proteins Csy1, Csy2, Csy3 and Cas6f (Csy4). Using co-purification followed by mass spectrometry as well as directed co-immunoprecipitation we have demonstrated complex formation by the Csy1-3 and Cas6f proteins, and determined details about the architecture of that complex. Cas3 was also shown to co-purify all four subtype-specific proteins, consistent with its role in targeting. Furthermore, our results show that the subtype I-F Cas1 and Cas3 (a Cas2-Cas3 hybrid) proteins interact, suggesting a protein complex for adaptation and a role for subtype I-F Cas3 proteins in both the adaptation and interference steps of the CRISPR/Cas mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号