首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   15篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   14篇
  2013年   8篇
  2012年   16篇
  2011年   17篇
  2010年   9篇
  2009年   15篇
  2008年   8篇
  2007年   10篇
  2006年   12篇
  2005年   12篇
  2004年   14篇
  2003年   10篇
  2002年   6篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
131.
Asp kinase catalyzes the first step of the Asp-derived essential amino acid pathway in plants and microorganisms. Depending on the source organism, this enzyme contains up to four regulatory ACT domains and exhibits several isoforms under the control of a great variety of allosteric effectors. We report here the dimeric structure of a Lys and S-adenosylmethionine-sensitive Asp kinase isoform from Arabidopsis thaliana in complex with its two inhibitors. This work reveals the structure of an Asp kinase and an enzyme containing two ACT domains cocrystallized with its effectors. Only one ACT domain (ACT1) is implicated in effector binding. A loop involved in the binding of Lys and S-adenosylmethionine provides an explanation for the synergistic inhibition by these effectors. The presence of S-adenosylmethionine in the regulatory domain indicates that ACT domains are also able to bind nucleotides. The organization of ACT domains in the present structure is different from that observed in Thr deaminase and in the regulatory subunit of acetohydroxyacid synthase III.  相似文献   
132.
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is a key regulator of genes implicated in lipid homeostasis and inflammation. PPARα trans-activity is enhanced by recruitment of coactivators such as SRC1 and CBP/p300 and is inhibited by binding of corepressors such as NCoR and SMRT. In addition to ligand binding, PPARα activity is regulated by post-translational modifications such as phosphorylation and ubiquitination. In this report, we demonstrate that hPPARα is SUMOylated by SUMO-1 on lysine 185 in the hinge region. The E2-conjugating enzyme Ubc9 and the SUMO E3- ligase PIASy are implicated in this process. In addition, ligand treatment decreases the SUMOylation rate of hPPARα. Finally, our results demonstrate that SUMO-1 modification of hPPARα down-regulates its trans-activity through the specific recruitment of corepressor NCoR but not SMRT leading to the differential expression of a subset of PPARα target genes. In conclusion, hPPARα SUMOylation on lysine 185 down-regulates its trans-activity through the selective recruitment of NCoR.  相似文献   
133.
Black-headed gulls, Larus ridibundus, produce clutches of three eggs, which contain high levels of maternal androgens in the yolk. These levels increase with laying order and the eggs hatch asynchronously. Experiments have supported the hypothesis that this within-clutch variation in maternal androgens mitigates the disadvantage of last-hatched chicks in sibling competition, by enhancing embryonic development and early posthatching growth. We hypothesized that these effects come about by the stimulating effects of maternal androgens on begging behaviour and competitive ability. In the field, we injected first-laid eggs of a clutch (which have a low androgen level) with either an androgen solution (T eggs) or vehicle (Oil eggs). We then created pairs of chicks hatched from Oil and T eggs, matched for egg mass and hatching date. Parent-chick interactions were recorded from observation hides. Chicks from T eggs hatched almost half a day sooner than those from Oil eggs. Furthermore, chicks from T eggs were more active during the first week after hatching, were more often the first to react to the approaching parent, begged more frequently, and obtained the larger share of food. We conclude that the enhancing effect of yolk androgens on growth in this species arises at least partly through androgen-mediated effects on the chicks' behaviour. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   
134.
The details of the interaction between two mutants of Cyanovirin-N (CV-N), an HIV inactivating protein, and di- and trimannosides, substructures of Man-9, were investigated by STD NMR spectroscopy. One mutant, CV-N (mutDB), contains only one carbohydrate-binding site on domain A, whereas in CV-N (mutDA), the specificity of domain A for trimannose was changed while the site in domain B was kept intact, allowing for a dissection of the overall binding. Results of the STD NMR experiments revealed close contact between the protein binding site on domain A and H2, H3, and H4 of the nonreducing terminal mannose unit for Manalpha(1-2)Manalpha OMe, Manalpha(1-2)Manalpha(1-3)Manalpha OMe, and Manalpha(1-2)Manalpha(1-6)Manalpha OMe. The Manalpha(1-2)Manalpha(1-2)Manalpha OMe trisaccharide interacted with CV-N with the highest affinity. Further dissection of the interaction was achieved by NMR experiments with synthetic 2'-, 3'-, 4'-, and 6'-deoxy analogues of the disaccharide Manalpha(1-2)Manalpha OMe. STD and (1)H- (15)N HSQC NMR spectroscopy revealed that the 2'- and 6'-deoxy dimannosides were recognized by CV-N, whereas no binding was detected for the 3'- and 4'-deoxy sugars. These results demonstrate that the 3'- and 4'-hydroxyl groups on the terminal residue are engaged in key polar interactions with the protein and are required for high-affinity binding.  相似文献   
135.
1H NMR spectroscopy has been used to analyze the product profiles arising from the hydrolysis of cellooligosaccharides by family GH9 cellulases. The product profiles obtained with the wild type and several active site mutants of a bacterial processive endoglucanase, TfCel9A, were compared with those obtained by a randomly acting plant endoglucanase, PttCel9A. PttCel9A is an orthologue of the Arabidopsis endocellulase, Korrigan, which is required for efficient cellulose biosynthesis. As expected, poplar PttCel9A was shown to catalyze the degradation of cellooligosaccharides by inversion of the configuration of the anomeric carbon. The product analyses showed that the number of interactions between the glucose units of the substrate and the aromatic residues in the enzyme active sites determines the point of cleavage in both enzymes.  相似文献   
136.
137.
BACKGROUND: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. METHODS: Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. RESULTS: We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin alpha2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. CONCLUSIONS: Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein.  相似文献   
138.
Cyclin‐dependent kinases constitute attractive pharmacological targets for cancer therapeutics, yet inhibitors in clinical trials target the ATP‐binding pocket of the CDK and therefore suffer from limited selectivity and emergence of resistance. The more recent development of allosteric inhibitors targeting conformational plasticity of protein kinases offers promising perspectives for therapeutics. In particular tampering with T‐loop dynamics of CDK2 kinase would provide a selective means of inhibiting this kinase, by preventing its conformational activation. To this aim we engineered a fluorescent biosensor that specifically reports on conformational changes of CDK2 activation loop and is insensitive to ATP or ATP‐competitive inhibitors, which constitutes a highly sensitive probe for identification of selective T‐loop modulators. This biosensor was successfully applied to screen a library of small chemical compounds leading to discovery of a family of quinacridine analogs, which potently inhibit cancer cell proliferation, and promote accumulation of cells in S phase and G2. These compounds bind CDK2/ Cyclin A, inhibit its kinase activity, compete with substrate binding, but not with ATP, and dock onto the T‐loop of CDK2. The best compound also binds CDK4 and CDK4/Cyclin D1, but not CDK1. The strategy we describe opens new doors for the discovery of a new class of allosteric CDK inhibitors for cancer therapeutics.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号