首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   20篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   10篇
  2014年   13篇
  2013年   20篇
  2012年   11篇
  2011年   11篇
  2010年   12篇
  2009年   3篇
  2008年   14篇
  2007年   13篇
  2006年   11篇
  2005年   15篇
  2004年   4篇
  2003年   5篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1992年   3篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
  1979年   5篇
  1978年   6篇
  1975年   3篇
  1974年   2篇
  1973年   8篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1968年   2篇
  1962年   4篇
  1960年   3篇
  1958年   1篇
  1929年   2篇
  1927年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
221.
222.
The cyclic hexapeptide, cyclo (Pro-Phe-D-Trp-Lys-Thr-Phe), I, has been shown to have the biological properties of somatostatin. We now report structure-activity studies which optimize the potency of this cyclic hexapeptide series with the synthesis of cyclo (N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe), II, which is 50–100 times more potent than somatostatin for the inhibition of insulin, glucagon and growth hormone release. The hydroxyl group of tyrosine is seen to lend a 10-fold enhancement to the potency. Potency also is found to be correlated with hydrophobicity. II is found to improve the control of postprandial hyperglycemia in diabetic animals when given in combination with insulin. The analog is found to be quite stable in the blood and in the gastrointestinal tract, but the bioavailability after oral administration is only 1–3%. The biological properties and long duration of II should allow clinical evaluation of the inhibition of glucagon release as an adjunct to insulin in the treatment of patients with diabetes.  相似文献   
223.
Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the β clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in β clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_βIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the β clade, St_βIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_βIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and β clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.  相似文献   
224.
We have identified Zkrml2, a novel homologue of the segmentation gene Krml/val in zebrafish (Danio rerio). Zkrml2 shows 72% and 92% identity in its basic leucine zipper domain with mouse Krml1 and zebrafish val, respectively. Zkrml2 is expressed coincident with MyoD throughout the somites starting at the three somite stage, becomes restricted to the dermomyotome, and subsequently disappears. Transient expression is also detected in the reticulospinal and oculomotor neurons. Zkrml2 maps to the Oregon linkage group 11 (Boston Linkage group 14) with no mapped zebrafish mutations nearby.  相似文献   
225.
The purpose of this paper is to provide further evidence that the C-terminal 1/3 of the alpha-paramyosin molecule is the portion responsible for the low solubility of alpha-paramyosin at neutral pH and low ionic strength. This was accomplished by digesting from the C-terminal end with carboxypeptidases A and B in 2 M urea at pH 8.5. The solubility increased as the molecular weight decreased until a stable segment 2/3 of the size of the molecule remained.  相似文献   
226.
A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated ‘invisible’ protein states that exchange with a ‘visible’ ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold denatured, unfolded conformational ensemble that is populated at a level of 6% at 2.5°C. A wide distribution of amide temperature coefficients is measured for the unfolded state. The distribution is centered about –5.6 ppb/K, consistent with an absence of intra-molecular hydrogen bonds, on average. However, the large range of values (standard deviation of 2.1 ppb/K) strongly supports the notion that the unfolded state of the protein is not a true random coil polypeptide chain.  相似文献   
227.
228.

Oribatid mites are tiny arthropods that are common in all soils of the world; however, they also occur in microhabitats above the soil such as lichens, mosses, on the bark of trees and in suspended soils. For understanding oribatid mite community structure, it is important to know whether they are dispersal limited. The aim of this study was to investigate the importance of oribatid mite dispersal using Malaise traps to exclude sole passive wind-dispersal. Oribatid mite communities were collected over a 3-year period from five habitat types (coniferous forests, deciduous forests, mixed forests, meadows, bog/heathlands sites) and three seasons (spring, summer, autumn) in Sweden. Mites entered traps either by walking or by phoresy, i.e., by being attached to flying insects. We hypothesized (1) that oribatid mite communities in the traps differ between habitats, indicating habitat-limited dispersal, and (2) that oribatid mite communities differ among seasons suggesting that dispersal varies due to changing environmental conditions such as moisture or resource availability. The majority of the collected species were not typically soil-living species but rather from habitats such as trees, lichens and mosses (e.g., Carabodes labyrinthicus, Cymbaeremaeus cymba, Diapterobates humeralis and Phauloppia lucorum) indicating that walking into the traps or entering them via phoresy are of greater importance for aboveground than for soil-living species. Overall, oribatid mite communities collected in the traps likely originated from the surrounding local habitat suggesting that long distance dispersal of oribatid mites is scarce. Significant differences among seasons indicate higher dispersal during warm and dry periods of the year. Notably, 16 species of oribatid mites collected in our study were sampled for the first time in Sweden. This study also demonstrates that Malaise traps are a meaningful tool to investigate spatial and temporal patterns of oribatid mite communities.

  相似文献   
229.
The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200–1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.  相似文献   
230.
The evolutionary synthesis, the standard 20th century view of how evolutionary change occurs, is based on selection, heritable phenotypic variation and a very simple view of genes. It is therefore unable to incorporate two key aspects of modern molecular knowledge: first is the richness of genomic variation, so much more complicated than simple mutation, and second is the opaque relationship between the genotype and its resulting phenotype. Two new and important books shed some light on how we should view evolutionary change now. Evolution: a view from the 21 st century by J.A. Shapiro (2011, FT Press Science, New Jersey, USA. pp. 246. $34.99.) examines the richness of genomic variation and its implications. Transformations of Lamarckism: from Subtle Fluids to Molecular Biology edited by S.B. Gissis &; E. Jablonka (2011, MIT Press, Cambridge, USA. pp. 457) includes some 40 papers that anyone with an interest in the history of evolutionary thought and the relationship between the environment and the genome will want to read. This review discusses both books within the context of contemporary evolutionary thinking and points out that neither really comes to terms with today's key systems-biology question: how does mutation-induced variation in a molecular network generate variation in the resulting phenotype?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号