首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7051篇
  免费   500篇
  2023年   33篇
  2022年   93篇
  2021年   193篇
  2020年   106篇
  2019年   132篇
  2018年   197篇
  2017年   178篇
  2016年   267篇
  2015年   386篇
  2014年   434篇
  2013年   540篇
  2012年   712篇
  2011年   650篇
  2010年   386篇
  2009年   350篇
  2008年   456篇
  2007年   422篇
  2006年   377篇
  2005年   355篇
  2004年   294篇
  2003年   265篇
  2002年   234篇
  2001年   36篇
  2000年   34篇
  1999年   55篇
  1998年   50篇
  1997年   30篇
  1996年   32篇
  1995年   29篇
  1994年   23篇
  1993年   19篇
  1992年   24篇
  1991年   14篇
  1990年   13篇
  1989年   16篇
  1988年   11篇
  1987年   10篇
  1986年   10篇
  1985年   6篇
  1984年   15篇
  1983年   9篇
  1982年   6篇
  1981年   8篇
  1980年   8篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1973年   3篇
  1970年   2篇
  1968年   1篇
排序方式: 共有7551条查询结果,搜索用时 15 毫秒
161.
Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity.  相似文献   
162.
163.
Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by an increased energy production. Increased feces secretion by caspase-1-deficient mice suggests that lipid malabsorption possibly further reduces adipose tissue mass. In this study we investigated whether caspase-1 plays a role in triglyceride-(TG)-rich lipoprotein metabolism using caspase-1-deficient and wild-type mice. Caspase-1 deficiency reduced the postprandial TG response to an oral lipid load, whereas TG-derived fatty acid (FA) uptake by peripheral tissues was not affected, demonstrated by unaltered kinetics of [3H]TG-labeled very low-density lipoprotein (VLDL)-like emulsion particles. An oral gavage of [3H]TG-containing olive oil revealed that caspase-1 deficiency reduced TG absorption and subsequent uptake of TG-derived FA in liver, muscle, and adipose tissue. Similarly, despite an elevated hepatic TG content, caspase-1 deficiency reduced hepatic VLDL-TG production. Intestinal and hepatic gene expression analysis revealed that caspase-1 deficiency did not affect FA oxidation or FA uptake but rather reduced intracellular FA transport, thereby limiting lipid availability for the assembly and secretion of TG-rich lipoproteins. The current study reveals a novel function for caspase-1, or caspase-1-cleaved substrates, in controlling intestinal TG absorption and hepatic TG secretion.  相似文献   
164.
The stimulation by Mg2+, Na+, K+, NH4 +, and ATP of (Na+, K+)-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na+, K+)-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg2+, Na+, and K+ concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V M = 115.0 ± 2.3 U mg?1, K 0.5 = 0.10 ± 0.01 mmol L?1. Stimulation by Na+ (V M = 110.0 ± 3.3 U mg?1, K 0.5 = 1.30 ± 0.03 mmol L?1), Mg2+ (V M = 115.0 ± 4.6 U mg?1, K 0.5 = 0.96 ± 0.03 mmol L?1), NH4 + (V M = 141.0 ± 5.6 U mg?1, K 0.5 = 1.90 ± 0.04 mmol L?1), and K+ (V M = 120.0 ± 2.4 U mg?1, K M = 2.74 ± 0.08 mmol L?1) followed single saturation curves and, except for K+, exhibited site–site interaction kinetics. Ouabain inhibited ATPase activity by around 73 % with K I = 12.4 ± 1.3 mol L?1. Complementary inhibition studies suggest the presence of F0F1–, Na+-, or K+-ATPases, but not V(H+)- or Ca2+-ATPases, in the gill microsomal preparation. K+ and NH4 + synergistically stimulated enzyme activity (≈25 %), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4 +, and K+ of the gill enzyme.  相似文献   
165.
AimsWe investigated the effects of ketogenic diet (KD) on levels of tumor necrosis factor alpha (TNF-α, a classical pro-inflammatory cytokine), BDNF (brain-derived neurotrophic factor, commonly associated with synaptic plasticity), and S100B, an astrocyte neurotrophic cytokine involved in metabolism regulation.Main methodsYoung Wistar rats were fed during 8 weeks with control diet or two KD, containing different proportions of omega 6 and omega 3 polyunsaturated fatty acids. Contents of TNF-α, BDNF and S100B were measured by ELISA in two brain regions (hippocampus and striatum) as well as blood serum and cerebrospinal fluid.Key findingsOur data suggest that KD was able to reduce the levels of BDNF in the striatum (but not in hippocampus) and S100B in the cerebrospinal fluid of rats. These alterations were not affected by the proportion of polyunsaturated fatty acids offered. No changes in S100B content were observed in serum or analyzed brain regions. Basal TNF-α content was not affected by KD.SignificanceThese findings reinforce the importance of this diet as an inductor of alterations in the brain, and such changes might contribute to the understanding of the effects (and side effects) of KD in brain disorders.  相似文献   
166.
167.
We aimed to evaluate whether the occurrence of cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii, has implications in the immunodiagnosis of paracoccidioidomycosis (PCM). Small quantities of the antigen gp43 were found in culture filtrates of P. lutzii strains and this molecule appeared to be more variable within P. lutzii because the synonymous-nonsynonymous mutation rate was lower, indicating an evolutionary process different from that of the remaining genotypes. The production of gp43 also varied between isolates belonging to the same species, indicating that speciation events are important, but not sufficient to fully explain the diversity in the production of this antigen. The culture filtrate antigen AgEpm83, which was obtained from a PS3 isolate, showed large quantities of gp43 and reactivity by immunodiffusion assays, similar to the standard antigen (AgB-339) from an S1 isolate. Furthermore, AgEpm83 was capable of serologically differentiating five serum samples from patients from the Botucatu and Jundiaí regions. These patients had confirmed PCM but, were non-reactive to the standard antigen, thus demonstrating an alternative for serological diagnosis in regions in which S1 and PS2 occur. We also emphasise that it is not advisable to use a single antigen preparation to diagnose PCM, a disease that is caused by highly diverse pathogens.  相似文献   
168.
Several evidences have demonstrated that oxidative stress has a central role in bipolar disorder (BD). Recently, studies have been suggested histone deacetylases (HDAC) as a possible target for new medications in treatment of mood disorders. In this study, we investigated the effects of sodium butyrate (SB, a histone deacetilase inhibitor) on oxidative stress in rats submitted to an animal model of mania induced by d-amphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with SB or Sal. Locomotor activity and risk-taking behavior were assessed by open-field test and oxidative stress was measured in prefrontal cortex, amygdala, hippocampus and striatum. The results showed that SB reversed and prevented d-AMPH-induced behavioral effects. The d-AMPH administration induced oxidative damage in all brain structures analyzed. Depending on the cerebral area and technique, SB was able to reverse this impairment. The present study reinforces the need for more studies of HDAC inhibitors as possible target for new medications in treatment for BD.  相似文献   
169.
In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson’s disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.  相似文献   
170.
Capsule: Studies of nest predation using artificial nests need to consider the effect of egg size on the types of predator that are detected.

Aims: To estimate the nest predation rate in the Patagonian temperate forest and evaluate the influence of egg size on predator guild.

Methods: On different plant species, we placed 108 nests each containing eggs of either Atlantic Canary Serinus canaria or Common Quail Coturnix coturnix, and a model clay egg of equal size to the real egg. Nest predators were identified from the marks left on the clay eggs or by videos recorded using camera traps.

Results: 86% of the nests were predated. Birds, mainly Chimango Caracara Milvago chimango, were the main nest predators. A marsupial, the Monito del Monte Dromiciops gliroides, and rodents also contributed to nest predation. Nest predation rates were similar for both egg sizes but the nest predator guild was different. Birds and rodents preyed on both eggs but the Monito del Monte consumed mainly small eggs.

Conclusion: Egg size did not influence the rate of nest predation but, instead, affected the nest predator guild. Consequently, in order to avoid underestimating the impacts of small predators, egg size should be considered in studies of nest predation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号