首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   27篇
  216篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   13篇
  2014年   14篇
  2013年   15篇
  2012年   13篇
  2011年   14篇
  2010年   14篇
  2009年   13篇
  2008年   5篇
  2007年   10篇
  2006年   13篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
11.
T Sasaki  C Brakebusch  J Engel    R Timpl 《The EMBO journal》1998,17(6):1606-1613
Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resistance and immunological analysis. It was highly modified by N- and O-glycosylation but not by glycosaminoglycans. Ultracentrifugation showed non-covalent association into oligomers with molar masses of 1000-1500 kDa. Electron microscopy showed ring-like shapes with diameters of 30-40 nm. M2BP bound in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1 subunits but not to alpha2 and alpha6 subunits, RGD peptide or lactose. This distinguishes cell adhesion of M2BP from that of laminin and excludes involvement of lactose-binding galectin-3. Immunological assays demonstrated variable secretion by cultured human cells of M2BP, which was detected in the extracellular matrix of several mouse tissues.  相似文献   
12.
13.
The desmosomal cadherin desmocollin (Dsc)1 is expressed in upper epidermis where strong adhesion is required. To investigate its role in vivo, we have genetically engineered mice with a targeted disruption in the Dsc1 gene. Soon after birth, null mice exhibit flaky skin and a striking punctate epidermal barrier defect. The epidermis is fragile, and acantholysis in the granular layer generates localized lesions, compromising skin barrier function. Neutrophils accumulate in the lesions and further degrade the tissue, causing sloughing (flaking) of lesional epidermis, but rapid wound healing prevents the formation of overt lesions. Null epidermis is hyperproliferative and overexpresses keratins 6 and 16, indicating abnormal differentiation. From 6 wk, null mice develop ulcerating lesions resembling chronic dermatitis. We speculate that ulceration occurs after acantholysis in the fragile epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human blistering diseases is discussed. These results show that Dsc1 is required for strong adhesion and barrier maintenance in epidermis and contributes to epidermal differentiation.  相似文献   
14.
Recent developments indicate that the regeneration of beta cell function and mass in patients with diabetes is possible. A regenerative approach may represent an alternative treatment option relative to current diabetes therapies that fail to provide optimal glycemic control. Here we report that the inactivation of GSK3 by small molecule inhibitors or RNA interference stimulates replication of INS-1E rat insulinoma cells. Specific and potent GSK3 inhibitors also alleviate the toxic effects of high concentrations of glucose and the saturated fatty acid palmitate on INS-1E cells. Furthermore, treatment of isolated rat islets with structurally diverse small molecule GSK3 inhibitors increases the rate beta cell replication by 2-3-fold relative to controls. We propose that GSK3 is a regulator of beta cell replication and survival. Moreover, our results suggest that specific inhibitors of GSK3 may have practical applications in beta cell regenerative therapies.  相似文献   
15.

Aims

Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV) remodeling after myocardial infarction (MI) remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI.

Methods and Results

Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) and non-transgenic littermate controls (NLC) were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk) 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42) admitted to hospital for percutaneous coronary intervention (PCI) serum-CTGF levels (s-CTGF) were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15.

Conclusion

Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.  相似文献   
16.
Entry of quiescent cells into the cell cycle is driven by the cyclin D-dependent kinases Cdk4 and Cdk6. These kinases are negatively regulated by the INK4 cell cycle inhibitors. We report the generation of mice defective in P15(INK4b) and P18(INK4c). Ablation of these genes, either alone or in combination, does not abrogate cell contact inhibition or senescence of mouse embryo fibroblasts in culture. However, loss of P15(INK4b), but not of P18(INK4c), confers proliferative advantage to these cells and makes them more sensitive to transformation by H-ras oncogenes. In vivo, ablation of P15(INK4b) and P18(INK4c) genes results in lymphoproliferative disorders and tumor formation. Mice lacking P18(INK4c) have deregulated epithelial cell growth leading to the formation of cysts, mostly in the cortical region of the kidneys and the mammary epithelium. Loss of both P15(INK4b) and P18(INK4c) does not result in significantly distinct phenotypic manifestations except for the appearance of cysts in additional tissues. These results indicate that P15(INK4b) and P18(IKN4c) are tumor suppressor proteins that act in different cellular lineages and/or pathways with limited compensatory roles.  相似文献   
17.
Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor (DDR) tyrosine kinases, DDR1 and DDR2. It is presently unclear whether collagen-induced DDR receptor activation, which occurs with very slow kinetics, involves additional proteins with kinase activity or membrane-anchored proteins serving as coreceptors. In particular, the role of the collagen-binding integrins alpha(1)beta(1) or alpha(2)beta(1) in the DDR activation process is undefined. Here, we provide three lines of evidence suggesting that DDR1 signaling is distinct from integrin activation. First we demonstrate that the enzymatic activity of DDR1 is essential for receptor tyrosine phosphorylation. Collagen-induced DDR receptor autophosphorylation can be blocked either by a dominant negative mutant or by a preparation of recombinant extracellular domain. Second, we show DDR1 signals independent of the epidermal growth factor (EGF) receptor. In cells that endogenously express both DDR1 and the EGF receptor, stimulation with EGF does not induce DDR activation. Third, we detected full DDR1 activation after collagen stimulation in cells that have been treated with blocking antibodies for alpha(2)beta(1) integrin or in cells with a targeted deletion of the beta(1) integrin gene. Finally, we show that overexpression of dominant negative DDR1 in the myoblast cell line C2C12 blocks cellular differentiation and the formation of myofibers.  相似文献   
18.
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.  相似文献   
19.
In 2015, cholesterol deficiency (CD) was reported for the first time as a new recessive defect in Holstein cattle. After GWAS mapping and identification of a disease‐associated haplotype, a causative loss‐of‐function variant in APOB was identified. CD‐clinically affected APOB homozygotes showed poor development, intermittent diarrhea and hypocholesterolemia and, consequently, a limited life expectation. Herein, we present a collection of 18 cases clinically diagnosed as CD‐affected APOB heterozygotes. CD‐clinically affected heterozygotes show reduced cholesterol and triglyceride blood concentrations. The differences in total blood cholesterol and triglycerides between nine CD‐clinically affected and 36 non‐affected heterozygotes were significant. As only some APOB heterozygotes show the clinical CD phenotype, we assume that the penetrance is reduced in heterozygotes compared to the fully penetrant effect observed in homozygotes. We conclude that APOB‐associated CD represents most likely an incomplete dominant inherited metabolic disease with incomplete penetrance in heterozygotes.  相似文献   
20.
Cell-cell contacts are crucial for the integrity of all tissues. Contrasting reports have been published about the role of Cdc42 in epithelial cell-cell contacts in vitro. In keratinocytes, it was suggested that Rac1 and not Cdc42 is crucial for the formation of mature epithelial junctions, based on dominant negative inhibition experiments. Deletion of the Cdc42 gene in keratinocytes in vivo slowly impaired the maintenance of cell-cell contacts by an increased degradation of β-catenin. Whether Cdc42 is required for the formation of mature junctions was not tested.We show now that Cdc42-deficient immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of β-catenin, but correlated to an impaired activation and localization of aPKCζ in the Cdc42-null keratinocytes. Inhibition of aPKCζ by the inhibitor Gö6983 reproduced the phenotype, suggesting that decreased activation of aPKCζ was sufficient to explain the defective junctional maturation. In the absence of Cdc42, Rac1 activation was strongly decreased, indicating that Cdc42 is upstream of Rac1 activation. These data reveal that Cdc42 is crucial for the formation of mature epithelial cell junctions between keratinocytes by regulating activation of aPKCζ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号