首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   26篇
  383篇
  2023年   3篇
  2022年   10篇
  2021年   16篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   8篇
  2016年   7篇
  2015年   31篇
  2014年   22篇
  2013年   28篇
  2012年   24篇
  2011年   32篇
  2010年   17篇
  2009年   10篇
  2008年   22篇
  2007年   15篇
  2006年   18篇
  2005年   21篇
  2004年   12篇
  2003年   14篇
  2002年   7篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1941年   1篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
51.
ABSTRACT: BACKGROUND: Understanding the pathogenesis of the chiari-like malformation in the Cavalier King Charles Spaniel (CKCS) is incomplete, and current hypotheses do not fully explain the development of syringomyelia (SM) in the spinal cords of affected dogs. This study investigates an unconventional pathogenetic theory for the development of cerebrospinal fluid (CSF) pressure waves in the subarachnoid space in CKCS with SM, by analogy with human diseases. In children with achondroplasia the shortening of the skull base can lead to a narrowing of the jugular foramina (JF) between the cranial base synchondroses. This in turn has been reported to cause a congestion of the major venous outflow tracts of the skull and consequently to an increase in the intracranial pressure (ICP). Amongst brachycephalic dog breeds the CKCS has been identified as having an extremely short and wide braincase. A stenosis of the JF and a consequential vascular compromise in this opening could contribute to venous hypertension, raising ICP and causing CSF jets in the spinal subarachnoid space of the CKCS. In this study, JF volumes in CKCSs with and without SM were compared to assess a possible role of this pathologic mechanism in the development of SM in this breed. RESULTS: Computed tomography (CT) scans of 40 CKCSs > 4 years of age were used to create three-dimensional (3D) models of the skull and the JF. Weight matched groups (7--10 kg) of 20 CKCSs with SM and 20 CKCSs without SM were compared. CKCSs without SM presented significantly larger JF -volumes (median left JF: 0.0633 cm3; median right JF: 0.0703 cm3; p < 0.0001) when compared with CKCSs with SM (median left JF: 0.0382 cm3; median right JF: 0.0434 cm3; p < 0.0001). There was no significant difference between the left and right JF within each group. Bland-Altman analysis revealed excellent reproducibility of all volume measurements. CONCLUSION: A stenosis of the JF and consecutive venous congestion may explain the aetiology of CSF pressure waves in the subarachnoid space, independent of cerebellar herniation, as an additional pathogenetic factor for the development of SM in this breed.  相似文献   
52.
53.
Nuclear magnetic relaxation dispersion (NMRD) profiles of unilamellar DPPC liposomes incorporating Gd-DTPA-bisamides with alkyl chains of 12 to 18 C atoms in their external and internal layers were recorded in order to study the influence that the chain length and structure of Gd-bisamides incorporated in the liposomal membrane have on their proton relaxivity. The NMRD profiles recorded at 310 K show that the relaxivity reaches a minimum value when the carbon chain lengths of the phospholipid and of the Gd complex match and is at a maximum in the presence of a carbon-carbon double bond. For these DPPC paramagnetic liposomes, the longer the aliphatic chains of the complex, the larger will be its immobilization in the membrane. In addition, the presence of an unsaturated carbon-carbon bond in the alkyl chain of the Gd complex induces an increase of its mobility and of its water exchange rate with, as a result, a much greater efficiency as an MRI contrast agent.  相似文献   
54.
55.
We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.  相似文献   
56.
57.
58.
59.
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.  相似文献   
60.
Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling‐tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1‐LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1‐LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1‐LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1‐LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1‐LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号