首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   18篇
  290篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   18篇
  2014年   18篇
  2013年   24篇
  2012年   15篇
  2011年   16篇
  2010年   17篇
  2009年   15篇
  2008年   23篇
  2007年   16篇
  2006年   12篇
  2005年   13篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   9篇
  1981年   1篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有290条查询结果,搜索用时 8 毫秒
31.
Like any obligate intracellular pathogen, the parasite Toxoplasma gondii has lost its capacity for living independently of another organism. Toxoplasma lacks many genes that encode for entire metabolic pathways and has, in return, expanded genes that promote nutrient scavenging to meet its basic metabolic requirements. Although sequestrated in a parasitophorous vacuole and thus insulated from the nutrient-rich host cytosol and organelles by a membrane, T. gondii has evolved efficient strategies to acquire essential metabolites from mammalian cells. This review explores the natural auxotrophies and nutrient scavenging activities of the parasite, emphasising unique transport systems and salvage pathways. We describe the mechanisms deployed by Toxoplasma to modify its parasitophorous vacuole to gain access to host cytosolic molecules and to hijack host organelles to retrieve their nutrient content. From a therapeutic perspective, we survey the different possibilities to starve T. gondii by nutrient depletion or disruption of salvage pathways.  相似文献   
32.
Vasconcellea species, often referred to as highland papayas, consist of a group of fruit species that are closely related to the common papaya (Carica papaya). The genus deserves special attention as a number of species show potential as raw material in the tropical fruit industry, fresh or in processed products, or as genetic resources in papaya breeding programs. Some species show a very restricted distribution and are included in the IUCN Red List. This study on Vasconcellea distribution and diversity compiled collection data from five Vasconcellea projects and retrieved data from 62 herbaria, resulting in a total of 1,553 georeferenced collection sites, in 16 countries, including all 21 currently known Vasconcellea species. Spatial analysis of species richness clearly shows that Ecuador, Colombia and Peru are areas of high Vasconcellea diversity. Combination of species occurrence data with climatic data delimitates the potential distribution of each species and allows the modeling of potential richness at continent level. Based on these modeled richness maps, Ecuador appears to be the country with the highest potential Vasconcellea diversity. Despite differences in sampling densities, its neighboring countries, Peru and Colombia, possess high modeled species richness as well. A combination of observed richness maps and modeled potential richness maps makes it possible to identify important collection gaps. A Principal Component Analysis (PCA) of climate data at the collection sites allows us to define climatic preferences and adaptability of the different Vasconcellea species and to compare them with those of the common papaya.  相似文献   
33.
In this study we show for the first time the intracellular distribution of a K39 kinesin homologue in Leishmania donovani, a medically important parasite of humans. Further, we demonstrated that this motor protein is expressed in both the insect and mammalian developmental forms (i.e. promastigote and amastigotes) of this organism. Moreover, in both of these parasite developmental stages, immunofluorescence indicated that the LdK39 kinesin accumulated at anterior and posterior cell poles and that it displayed a peripheral localization consistent with the cortical cytoskeleton. Using a molecular approach, we identified, cloned and characterized the first complete open reading frame for the gene (LdK39) encoding this large (> 358 kDa) motor protein in L. donovani. Based on these observations, we subsequently used a homologous episomal expression system to dissect and express the functional domains that constitute the native molecule. Cell fractionation experiments demonstrated that LdK39 was soluble and that it bound to detergent-extracted cytoskeletons of these parasites in an ATP-dependent manner. The cumulative results of these experiments are consistent with LdK39 functioning as an ATP-dependent kinesin which binds to and travels along the cortical cytoskeleton of this important human pathogen.  相似文献   
34.
Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.  相似文献   
35.

Background

A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor β (ERβ); however, the role of ERβ and estrogens in NSCLC is likely to be multifactorial. Here we tested the hypothesis that proteins interacting with ERβ in human lung adenocarcinoma cells that respond proliferatively to estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods

FLAG affinity purification of FLAG-ERβ-interacting proteins was used to isolate ERβ-interacting proteins in whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines. Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results were confirmed by coimmunoprecipitation.

Results

LC-MS/MS identified 27 non-redundant ERβ-interacting proteins. ERβ-interacting proteins included hsp70, hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERβ-interacting proteins revealed differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells. Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERβ and EGFR interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERβ in A549 cell lines and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion

Our results identify specific differences in ERβ-interacting proteins in lung adenocarcinoma cells corresponding to ligand-dependent differences in estrogenic responses.
  相似文献   
36.
Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved 'sterol-sensing domain' (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.  相似文献   
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号