首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   27篇
  2021年   6篇
  2017年   6篇
  2016年   6篇
  2015年   13篇
  2014年   16篇
  2013年   14篇
  2012年   19篇
  2011年   21篇
  2010年   14篇
  2009年   13篇
  2008年   11篇
  2007年   14篇
  2006年   7篇
  2005年   12篇
  2003年   15篇
  2002年   11篇
  2001年   9篇
  2000年   10篇
  1999年   15篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   12篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1982年   6篇
  1981年   11篇
  1980年   4篇
  1979年   20篇
  1978年   14篇
  1977年   10篇
  1976年   11篇
  1975年   7篇
  1974年   11篇
  1973年   6篇
  1971年   12篇
  1969年   6篇
  1968年   5篇
  1967年   4篇
  1966年   4篇
排序方式: 共有499条查询结果,搜索用时 15 毫秒
161.
Resistance to progestin treatment is a major hurdle in the treatment of advanced and reoccurring endometrial cancer. Fenretinide is a synthetic retinoid that has been evaluated in clinical trials as a cancer therapeutic and chemo-preventive agent. Fenretinide has been established to be cytotoxic to many kinds of cancer cells. In the present study, we demonstrate that fenretinide decreased cell viability and induced apoptosis in Ishikawa cells, which are an endometrial cancer cell line, in dose dependent manner in-vitro. This effect was found to be independent of retinoic acid nuclear receptor signaling pathway. Further, we have shown that this induction of apoptosis by fenretinide may be caused by increased retinol uptake via STRA6. Silencing of STRA6 was shown to decrease apoptosis which was inhibited by knockdown of STRA6 expression in Ishikawa cells. Results of an in-vivo study demonstrated that intraperitoneal injections of fenretinide in endometrial cancer tumors (created using Ishikawa cells) in mice inhibited tumor growth effectively. Immunohistochemistry of mice tumors showed a decrease in Ki67 expression and an increase in cleaved caspase-3 staining after fenretinide treatment when compared to vehicle treated mice. Collectively, our results are the first to establish the efficacy of fenretinide as an antitumor agent for endometrial cancer both in-vitro and in-vivo, providing a valuable rationale for initiating more preclinical studies and clinical trials using fenretinide for the treatment of endometrial cancer.  相似文献   
162.
Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response.  相似文献   
163.
164.

Introduction

The main objective of this study was to determine whether meniscus cells from the outer (MCO) and inner (MCI) regions of the meniscus interact similarly to or differently with mesenchymal stromal stem cells (MSCs). Previous study had shown that co-culture of meniscus cells with bone marrow-derived MSCs result in enhanced matrix formation relative to mono-cultures of meniscus cells and MSCs. However, the study did not examine if cells from the different regions of the meniscus interacted similarly to or differently with MSCs.

Methods

Human menisci were harvested from four patients undergoing total knee replacements. Tissue from the outer and inner regions represented pieces taken from one third and two thirds of the radial distance of the meniscus, respectively. Meniscus cells were released from the menisci after collagenase treatment. Bone marrow MSCs were obtained from the iliac crest of two patients after plastic adherence and in vitro culture until passage 2. Primary meniscus cells from the outer (MCO) or inner (MCI) regions of the meniscus were co-cultured with MSCs in three-dimensional (3D) pellet cultures at 1:3 ratio, respectively, for 3 weeks in the presence of serum-free chondrogenic medium containing TGF-β1. Mono-cultures of MCO, MCI and MSCs served as experimental control groups. The tissue formed after 3 weeks was assessed biochemically, histochemically and by quantitative RT-PCR.

Results

Co-culture of inner (MCI) or outer (MCO) meniscus cells with MSCs resulted in neo-tissue with increased (up to 2.2-fold) proteoglycan (GAG) matrix content relative to tissues formed from mono-cultures of MSCs, MCI and MCO. Co-cultures of MCI or MCO with MSCs produced the same amount of matrix in the tissue formed. However, the expression level of aggrecan was highest in mono-cultures of MSCs but similar in the other four groups. The DNA content of the tissues from co-cultured cells was not statistically different from tissues formed from mono-cultures of MSCs, MCI and MCO. The expression of collagen I (COL1A2) mRNA increased in co-cultured cells relative to mono-cultures of MCO and MCI but not compared to MSC mono-cultures. Collagen II (COL2A1) mRNA expression increased significantly in co-cultures of both MCO and MCI with MSCs compared to their own controls (mono-cultures of MCO and MCI respectively) but only the co-cultures of MCO:MSCs were significantly increased compared to MSC control mono-cultures. Increased collagen II protein expression was visible by collagen II immuno-histochemistry. The mRNA expression level of Sox9 was similar in all pellet cultures. The expression of collagen × (COL10A1) mRNA was 2-fold higher in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs. Additionally, other hypertrophic genes, MMP-13 and Indian Hedgehog (IHh), were highly expressed by 4-fold and 18-fold, respectively, in co-cultures of MCI:MSCs relative to co-cultures of MCO:MSCs.

Conclusions

Co-culture of primary MCI or MCO with MSCs resulted in enhanced matrix formation. MCI and MCO increased matrix formation similarly after co-culture with MSCs. However, MCO was more potent than MCI in suppressing hypertrophic differentiation of MSCs. These findings suggest that meniscus cells from the outer-vascular regions of the meniscus can be supplemented with MSCs in order to engineer functional grafts to reconstruct inner-avascular meniscus.  相似文献   
165.
Although many secondary metabolites with diverse biological activities have been isolated from myxobacteria, most strains of these biotechnologically important gliding prokaryotes remain difficult to handle genetically. In this study we describe the new fast growing myxobacterial thermophilic isolate GT-2 as a heterologous host for the expression of natural product biosynthetic pathways isolated from other myxobacteria. According to the results of sequence analysis of the 16S rDNA, this moderately thermophilic isolate is closely related to Corallococcus macrosporus and was therefore named C. macrosporus GT-2. Fast growth of moderately thermophilic strains results in shorter fermentation and generation times, aspects which are of significant interest for molecular biological work as well as production of secondary metabolites. Development of a genetic manipulation system allowed the introduction of the complete myxochromide biosynthetic gene cluster, located on a transposable fragment, into the chromosome of GT-2. Genetic engineering of the biosynthetic gene cluster by promoter exchange leads to much higher production of myxochromides in the heterologous host C. macrosporus GT-2 in comparison to the original producer Stigmatella aurantiaca and to the previously described heterologous host Pseudomonas putida (600 mg/L versus 8 mg/L and 40 mg/L, respectively).  相似文献   
166.
Renal activity and smoldering disease is difficult to assess in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) because of renal scarring. Even repeated biopsies suffer from sampling errors in this focal disease especially in patients with chronic renal insufficiency. We applied capillary electrophoresis coupled to mass spectrometry toward urine samples from patients with active renal AAV to identify and validate urinary biomarkers that enable differential diagnosis of disease and assessment of disease activity. The data were compared with healthy individuals, patients with other renal and non-renal diseases, and patients with AAV in remission. 113 potential biomarkers were identified that differed significantly between active renal AAV and healthy individuals and patients with other chronic renal diseases. Of these, 58 could be sequenced. Sensitivity and specificity of models based on 18 sequenced biomarkers were validated using blinded urine samples of 40 patients with different renal diseases. Discrimination of AAV from other renal diseases in blinded samples was possible with 90% sensitivity and 86.7–90% specificity depending on the model. 10 patients with active AAV were followed for 6 months after initiation of treatment. Immunosuppressive therapy led to a change of the proteome toward “remission.” 47 biomarkers could be sequenced that underwent significant changes during therapy together with regression of clinical symptoms, normalization of C-reactive protein, and improvement of renal function. Proteomics analysis with capillary electrophoresis-MS represents a promising tool for fast identification of patients with active AAV, indication of renal relapses, and monitoring for ongoing active renal disease and remission without renal biopsy.Systemic vasculitides are a heterogeneous group of disorders with inflammation of the blood vessel wall as their common hallmark. These disorders often pose difficulties with regard to diagnosis and monitoring of disease activity both at the initial presentation and during follow-up. In one subgroup of small vessel vasculitides, the advent of anti-neutrophil cytoplasmic antibodies (ANCAs)1 in the 1980s not only provided a new pathogenetic concept but also a diagnostic marker (1, 2). In this group, the granulomatous ANCA-associated vasculitis (GAAV) (previously named Wegener granulomatosis) and the microscopic polyangiitis (MPA) share several common features, including pauci-immune focal crescentic necrotizing glomerulonephritis and often a pulmonary capillaritis (3). Because of the association with ANCA, these diseases (together with the Churg-Strauss syndrome) are sometimes collectively referred to as ANCA-associated vasculitis (AAV). Recently circulating endothelial cells have emerged as an important marker correlating with severity and activity of the systemic vasculitic disease, and their clinical use in small vessel AAV has been demonstrated (4, 5). Regarding renal involvement, which is found in up to 80–90% of the patients with AAV, activity is defined by kidney biopsy with pauci-immune necrotizing glomerulonephritis. Renal involvement may occur or recur at every point of the disease and the follow-up even if other organ involvement is controlled by immunosuppressive therapy. Early detection is important as renal prognosis depends on early administration of immunosuppressive treatment (6), and scarring and relapses increase the risk for terminal renal failure, which itself is a risk factor for patient survival. As kidney biopsy is invasive and the risk of bleeding increases with chronic renal damage, surrogate markers, such as rising creatinine, increasing proteinuria, and most importantly erythrocytes and erythrocyte cast in the urinary sediment, are used. However, these markers have limitations. Microhematuria might persist despite remission, proteinuria might increase despite improvement in renal function, and other renal diseases can also develop (7). Therefore, new markers for renal disease activity are eagerly awaited.Recently proteome analysis of urine has presented itself as a promising tool in the definition of chronic renal diseases (8, 9). We have developed an analytical platform for human urine analysis using capillary electrophoresis (CE) coupled on line to an ESI-TOF mass spectrometer (8, 10, 11). This approach permits the rapid analysis of the low molecular weight urinary proteome/peptidome in a single step and has enabled identification and validation of several urinary biomarkers in patients with different renal diseases (1114).In this study, we aimed toward identification of biomarkers for active AAV and response to immunosuppressive treatment. The results indicate that urinary proteome analysis enables differential diagnosis and monitoring of renal disease activity of AAV.  相似文献   
167.
Here we detail the modification of a quadrupole linear ion trap-orbitrap hybrid (QLT-orbitrap) mass spectrometer to accommodate a negative chemical ionization (NCI) source. The NCI source is used to produce fluoranthene radical anions for imparting electron transfer dissociation (ETD). The anion beam is stable, robust, and intense so that a sufficient amount of reagents can be injected into the QLT in only 4-8 ms. Following ion/ion reaction in the QLT, ETD product ions are mass-to-charge (m/z) analyzed in either the QLT (for speed and sensitivity) or the orbitrap (for mass resolution and accuracy). Here we describe the physical layout of this device, parametric optimization of anion transport, an evaluation of relevant ETD figures of merit, and the application of this instrument to protein sequence analysis. Described proteomic applications include complex peptide mixture analysis, post-translational modification (PTM) site identification, isotope-encoded quantitation, large peptide characterization, and intact protein analysis. From these experiments, we conclude the ETD-enabled orbitrap will provide the proteomic field with several new opportunities and represents an advance in protein sequence analysis technologies.  相似文献   
168.

Introduction

Dental calculus is a mineralized microbial dental plaque biofilm that forms throughout life by precipitation of salivary calcium salts. Successive cycles of dental plaque growth and calcification make it an unusually well-preserved, long-term record of host-microbial interaction in the archaeological record. Recent studies have confirmed the survival of authentic ancient DNA and proteins within historic and prehistoric dental calculus, making it a promising substrate for investigating oral microbiome evolution via direct measurement and comparison of modern and ancient specimens.

Objective

We present the first comprehensive characterization of the human dental calculus metabolome using a multi-platform approach.

Methods

Ultra performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) quantified 285 metabolites in modern and historic (200 years old) dental calculus, including metabolites of drug and dietary origin. A subset of historic samples was additionally analyzed by high-resolution gas chromatography–MS (GC–MS) and UPLC–MS/MS for further characterization of metabolites and lipids. Metabolite profiles of modern and historic calculus were compared to identify patterns of persistence and loss.

Results

Dipeptides, free amino acids, free nucleotides, and carbohydrates substantially decrease in abundance and ubiquity in archaeological samples, with some exceptions. Lipids generally persist, and saturated and mono-unsaturated medium and long chain fatty acids appear to be well-preserved, while metabolic derivatives related to oxidation and chemical degradation are found at higher levels in archaeological dental calculus than fresh samples.

Conclusions

The results of this study indicate that certain metabolite classes have higher potential for recovery over long time scales and may serve as appropriate targets for oral microbiome evolutionary studies.
  相似文献   
169.

Background  

Carpal tunnel syndrome is a common disorder, which can be treated with surgery or conservative options. However, there is insufficient evidence and no consensus among physicians with regard to the preferred treatment for carpal tunnel syndrome. Therefore, a randomized controlled trial is conducted to compare the short- and long-term efficacy of surgery and splinting in patients with carpal tunnel syndrome. An attempt is also made to avoid the (methodological) limitations encountered in earlier trials on the efficacy of various treatment options for carpal tunnel syndrome.  相似文献   
170.
The role of the STAT4 signaling pathway in autoimmune diabetes was investigated using the rat insulin promoter lymphocytic choriomeningitis virus model of virally induced autoimmune diabetes. Abrogation of STAT4 signaling significantly reduced the development of CD4+-T cell-dependent but not CD4+-T cell-independent diabetes, illustrating the fine-tuned kinetics involved in the pathogenesis of autoimmunity. However, the absence of STAT4 did not prevent the generation of autoreactive Th1/Tc1 T cell responses, as well as protective antiviral immunity. Protection from insulin-dependent diabetes mellitus was associated with decreased numbers of autoreactive CTL precursors in the pancreas and the spleen and a general as well as Ag-specific reduction of IFN-gamma secretion by T lymphocytes. A shift from Th1 to Th2 T cell immunity was not observed. Hence, our results implicate both CTL and cytokines in beta cell destruction. Selective inhibition of the STAT4 signal transduction pathway might constitute a novel and attractive approach to prevent clinical insulin-dependent diabetes mellitus in prediabetic individuals at risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号