首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   20篇
  2021年   5篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   11篇
  2012年   15篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   14篇
  2006年   6篇
  2005年   11篇
  2004年   4篇
  2003年   12篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1997年   6篇
  1993年   5篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   10篇
  1978年   3篇
  1977年   6篇
  1976年   11篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   2篇
  1971年   12篇
  1970年   3篇
  1969年   5篇
  1968年   5篇
  1967年   4篇
  1966年   4篇
  1964年   2篇
  1962年   2篇
排序方式: 共有376条查询结果,搜索用时 250 毫秒
91.
The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.  相似文献   
92.
93.
94.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT, EC 2.3.1.87) is the first enzyme in the conversion of serotonin to melatonin. Large changes in AANAT activity play an important role in the daily rhythms in melatonin production. Although a single AANAT gene has been found in mammals and the chicken, we have now identified two AANAT genes in fish. These genes are designated AANAT-1 and AANAT-2; all known AANATs belong to the AANAT-1 subfamily. Pike AANAT-1 is nearly exclusively expressed in the retina and AANAT-2 in the pineal gland. The abundance of each mRNA changes on a circadian basis, with retinal AANAT-1 mRNA peaking in late afternoon and pineal AANAT-2 mRNA peaking 6 h later. The pike AANAT-1 and AANAT-2 enzymes (66% identical amino acids) exhibit marked differences in their affinity for serotonin, relative affinity for indoleethylamines versus phenylethylamines and temperature-activity relationships. Two AANAT genes also exist in another fish, the trout. The evolution of two AANATs may represent a strategy to optimally meet tissue-related requirements for synthesis of melatonin: pineal melatonin serves an endocrine role and retinal melatonin plays a paracrine role.  相似文献   
95.
The ability to taste phenylthiocarbamide (PTC) shows complex inheritance in humans. We obtained a quantitative measure of PTC tasting ability in 267 members of 26 large three-generation families that were part of a set of CEPH families that had been used for genetic mapping. Significant bimodality was found for the distribution of age and gender adjusted scores (P<0.001), with estimated means of 3.16 (SD=1.80) and 9.26 (SD=1.54). Using the extensive genotyping available in these families from the genetic mapping efforts, we performed a genome scan by using 1324 markers with an average spacing of 4 cM. Analyses were first carried out with a recessive genetic model that has traditionally been assumed for the trait, and a threshold score of 8.0 delineating tasters from non-tasters. In this qualitative analysis, the maximum genome-wide lod score was 4.74 at 246 cM on chromosome 7; 17 families showed segregation of the dichotomous PTC phenotype. No other lod scores were significant; the next highest score was on chromosome 10 (lod=1.64 at 85 cM), followed by chromosome 3 (lod=1.29 at 267 cM). Because PTC taste ability exhibited substantial quantitative variation, the quantitative trait was also analyzed by using a variance components approach in SOLAR. The maximum quantitative genome-wide lod score was 8.85 at 246 cM on chromosome 7. Evidence for other possible quantitative loci was found on chromosomes 1 (lod=2.31 at 344 cM) and 16 (lod=2.01 at 14 cM). A subsequent two-locus whole-genome scan conditional on the chromosome 7 quantitative trait locus identified the chromosome 16 locus (two-locus lod=3.33 at 14 cM).  相似文献   
96.
97.
The large daily rhythm in circulating melatonin levels is a highly conserved feature of vertebrate physiology: high values always occur at night. The dynamics of the rhythm are controlled by the next-to-last enzyme in melatonin synthesis (serotonin --> N-acetylserotonin --> melatonin), arylalkylamine N-acetyltransferase (AANAT), the "melatonin rhythm enzyme". In vertebrate biology, AANAT plays a unique time-keeping role as the molecular interface between the environment and the hormonal signal of time, melatonin. This chapter describes the mammalian AANAT regulatory system, which includes the retina, neural structures, transsynaptic processes, and molecular events. In addition, special attention is paid to the functional characteristics of the systems which insure that the nocturnal increase in melatonin is an accurate and reliable indicator of the duration of the night, and why the melatonin rhythm is the most reliable output signal of the Mind's Clock.  相似文献   
98.
99.
Shewanella colwelliana D is a marine procaryote which produces a diffusible brown pigment that correlates with melA gene expression. Previously, melA had been cloned, sequenced, and expressed in Escherichia coli; however, the reaction product of MelA had not been identified. This report identifies that product as homogentisic acid, provides evidence that the pigment is homogentisic acid-melanin (pyomelanin), and suggests that MelA is p-hydroxyphenylpyruvate hydroxylase. This is the first report of pyomelanin in an obligate marine bacterium.  相似文献   
100.
NADPH-cytochrome P-450 reductase has been purified to electrophoretic homogeneity from rabbit liver microsomes by a procedure that may be used in conjunction with the isolation of the major forms of cytochrome P-450. The purified reductase is active in a reconstituted hydroxylation system containing P-450LM2 or P-450LM4. The enzyme contains one molecule each of FMN and FAD per polypeptide chain having an apparent minimal molecular weight of 74,000. Immunological techniques provided evidence for only a single form of the reductase; lower molecular weight forms occasionally seen are believed to be due to degradation by contaminating microsomal or bacterial proteases. Upon anaerobic photochemical reduction, the rabbit liver reductase undergoes spectral changes highly similar to those previously described by Vermilion and Coon for the rat liver enzyme; the fully reduced rabbit liver enzyme is converted to the three-electron-reduced form by the addition of NADP and then to the stable one-electron-reduced form by exposure to oxygen. The CD spectra of the fully oxidized enzyme, one-electron-reduced form (air-stable semiquinone), three-electron-reduced form, and fully reduced form are presented. The results obtained provide evidence that the FMN and FAD are in highly different environments in the enzyme, as also indicated by the different redox potentials and oxygen reactivities of the flavins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号