首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   20篇
  2021年   5篇
  2017年   5篇
  2016年   6篇
  2015年   10篇
  2014年   14篇
  2013年   11篇
  2012年   15篇
  2011年   19篇
  2010年   9篇
  2009年   7篇
  2008年   10篇
  2007年   14篇
  2006年   6篇
  2005年   11篇
  2004年   4篇
  2003年   12篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1997年   6篇
  1993年   5篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   10篇
  1978年   3篇
  1977年   6篇
  1976年   11篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   2篇
  1971年   12篇
  1970年   3篇
  1969年   5篇
  1968年   5篇
  1967年   4篇
  1966年   4篇
  1964年   2篇
  1962年   2篇
排序方式: 共有377条查询结果,搜索用时 31 毫秒
121.
Nutritional benefits of cultivated oat (Avena sativa L., 2n = 6x = 42, AACCDD) are well recognized; however, seed protein levels are modest and resources for genetic improvement are scarce. The wild tetraploid, A. magna Murphy et Terrell (syn A. maroccana Gdgr., 2n = 4x = 28, CCDD), which contains approximately 31% seed protein, was hybridized with cultivated oat to produce a domesticated A. magna. Wild and cultivated accessions were crossed to generate a recombinant inbred line (RIL) population. Although these materials could be used to develop domesticated, high-protein oat, mapping and quantitative trait loci introgression is hindered by a near absence of genetic markers. Objectives of this study were to develop high-throughput, A. magna-specific markers; generate a genetic linkage map based on the A. magna RIL population; and map genes controlling oat domestication. A Diversity Arrays Technology (DArT) array derived from 10 A. magna genotypes was used to generate 2,688 genome-specific probes. These, with 12,672 additional oat clones, produced 2,349 polymorphic markers, including 498 (21.2%) from A. magna arrays and 1,851 (78.8%) from other Avena libraries. Linkage analysis included 974 DArT markers, 26 microsatellites, 13 SNPs, and 4 phenotypic markers, and resulted in a 14-linkage-group map. Marker-to-marker correlation coefficient analysis allowed classification of shared markers as unique or redundant, and putative linkage-group-to-genome anchoring. Results of this study provide for the first time a collection of high-throughput tetraploid oat markers and a comprehensive map of the genome, providing insights to the genome ancestry of oat and affording a resource for study of oat domestication, gene transfer, and comparative genomics.  相似文献   
122.
Proper postoperative management of body contouring patients is essential to satisfactory long-term outcomes. Standard issues such as drain management, nutrition, and activity limitations will be relevant to all patients. Although major complications are infrequent, effective strategies for management of common minor wound complications are invaluable.  相似文献   
123.
BACKGROUND: Soluble complement receptor-1 (sCR1), a potent complement inhibitor, confers neuroprotection in a murine stroke model. Additional neuroprotective benefit is achieved by sLe x-glycosylation of sCR1. In an effort to translate sCR1-sLe x to clinical trials, we evaluated this agent in a primate stroke model. METHODS: Adult male baboons randomly received either sCR1-sLe x or vehicle. Stroke volume was assessed on day 3, and neurological examinations were conducted daily. Complement activity (CH50) was measured at 30 minute, 2, 6, 12 hour, 3, and 10 days post-ischemia. RESULTS: The experiment was terminated prematurely following an interim analysis. In a preliminary cohort (n = 3 per arm), infarct volume was greater in the treated animals. No difference in neurological score was found between groups. CH50 levels were significantly reduced in the sCR1sLe x-treated groups. A hypotensive response was also observed in animals treated with sCR1-sLe x. Conclusions Further work is necessary to explain the hypotensive response observed in primates prior to further clinical development of sCR1-sLe x.  相似文献   
124.
The apolipoprotein E (APOE) epsilon4 allele is the best established genetic risk factor for late-onset Alzheimer's disease (LOAD). We conducted genome-wide surveys of 502,627 single-nucleotide polymorphisms (SNPs) to characterize and confirm other LOAD susceptibility genes. In epsilon4 carriers from neuropathologically verified discovery, neuropathologically verified replication, and clinically characterized replication cohorts of 1411 cases and controls, LOAD was associated with six SNPs from the GRB-associated binding protein 2 (GAB2) gene and a common haplotype encompassing the entire GAB2 gene. SNP rs2373115 (p = 9 x 10(-11)) was associated with an odds ratio of 4.06 (confidence interval 2.81-14.69), which interacts with APOE epsilon4 to further modify risk. GAB2 was overexpressed in pathologically vulnerable neurons; the Gab2 protein was detected in neurons, tangle-bearing neurons, and dystrophic neuritis; and interference with GAB2 gene expression increased tau phosphorylation. Our findings suggest that GAB2 modifies LOAD risk in APOE epsilon4 carriers and influences Alzheimer's neuropathology.  相似文献   
125.
The growing wildland-urban interface is a frontier of human-wildlife conflict worldwide. Where natural and developed areas meet, there is potential for negative interactions between humans and wild animals, including wildlife-vehicle collisions. Understanding the environmental and anthropogenic factors leading to these collisions can inform transportation and habitat planning, with an objective of reducing animal mortality and human costs. We investigated spatial, temporal, and species-specific patterns of roadkill on Interstate-280 (I-280) in California, USA, and examined the effects of land cover, fencing, lighting, and traffic. The highway is situated just south of San Francisco, dividing a large wildlife refuge to the west from dense residential areas to the east, and therefore presents a major barrier to wildlife movement. Areas with a higher percentage of developed land east of I-280 and areas with more open space on the west side of I-280 were associated with an increase in overall roadkill, suggesting that hard boundaries at the wildland-urban interface may be zones of high risk for dispersing animals. This pattern was especially strong for raccoons (Procyon lotor) and black-tailed deer (Odocoileus hemionus). The presence of lighting correlated with increased roadkill with the exception of coyote (Canis latrans). Contrary to our expectations, we found weak evidence that fencing increases roadkill, perhaps because animals become trapped on roadways or because fencing is not sufficient to block access to the road by wildlife. Finally, we found strong evidence for roadkill seasonality, correlated with differences in movement and dispersal across life-history stages. We highlight the value of citizen-science datasets for monitoring human-wildlife conflict and suggest potential mitigation measures to reduce the negative effects of wildlife-vehicle collisions for people and wildlife. © 2019 The Wildlife Society.  相似文献   
126.
Endothelial responses to fluid shear stress are essential for vascular development and physiology, and determine the formation of atherosclerotic plaques at regions of disturbed flow. Previous work identified VE-cadherin as an essential component, along with PECAM-1 and VEGFR2, of a complex that mediates flow signaling. However, VE-cadherin’s precise role is poorly understood. We now show that the transmembrane domain of VE-cadherin mediates an essential adapter function by binding directly to the transmembrane domain of VEGFR2, as well as VEGFR3, which we now identify as another component of the junctional mechanosensory complex. VEGFR2 and VEGFR3 signal redundantly downstream of VE-cadherin. Furthermore, VEGFR3 expression is observed in the aortic endothelium, where it contributes to flow responses in vivo. In summary, this study identifies a novel adapter function for VE-cadherin mediated by transmembrane domain association with VEGFRs.  相似文献   
127.
Resistance to progestin treatment is a major hurdle in the treatment of advanced and reoccurring endometrial cancer. Fenretinide is a synthetic retinoid that has been evaluated in clinical trials as a cancer therapeutic and chemo-preventive agent. Fenretinide has been established to be cytotoxic to many kinds of cancer cells. In the present study, we demonstrate that fenretinide decreased cell viability and induced apoptosis in Ishikawa cells, which are an endometrial cancer cell line, in dose dependent manner in-vitro. This effect was found to be independent of retinoic acid nuclear receptor signaling pathway. Further, we have shown that this induction of apoptosis by fenretinide may be caused by increased retinol uptake via STRA6. Silencing of STRA6 was shown to decrease apoptosis which was inhibited by knockdown of STRA6 expression in Ishikawa cells. Results of an in-vivo study demonstrated that intraperitoneal injections of fenretinide in endometrial cancer tumors (created using Ishikawa cells) in mice inhibited tumor growth effectively. Immunohistochemistry of mice tumors showed a decrease in Ki67 expression and an increase in cleaved caspase-3 staining after fenretinide treatment when compared to vehicle treated mice. Collectively, our results are the first to establish the efficacy of fenretinide as an antitumor agent for endometrial cancer both in-vitro and in-vivo, providing a valuable rationale for initiating more preclinical studies and clinical trials using fenretinide for the treatment of endometrial cancer.  相似文献   
128.
Cyclic adenosine monophosphate (cAMP) is a crucial intracellular second messenger molecule that converts extracellular molecules to intracellular signal transduction pathways generating cell- and stimulus-specific effects. Importantly, specific phosphodiesterase (PDE) subtypes control the amplitude and duration of cAMP-induced physiological processes and are therefore a prominent pharmacological target currently used in a variety of fields. Here we tested the extracts from traditional Chinese medicine, Forsythia suspense seeds, which have been used for more than 2000 years to relieve respiratory symptoms. Using structural-functional analysis we found its major lignin, Forsynthin, acted as an immunosuppressant by inhibiting PDE4 in inflammatory and immune cell. Moreover, several novel, selective small molecule derivatives of Forsythin were tested in vitro and in murine models of viral and bacterial pneumonia, sepsis and cytokine-driven systemic inflammation. Thus, pharmacological targeting of PDE4 may be a promising strategy for immune-related disorders characterized by amplified host inflammatory response.  相似文献   
129.
130.
Renal activity and smoldering disease is difficult to assess in anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) because of renal scarring. Even repeated biopsies suffer from sampling errors in this focal disease especially in patients with chronic renal insufficiency. We applied capillary electrophoresis coupled to mass spectrometry toward urine samples from patients with active renal AAV to identify and validate urinary biomarkers that enable differential diagnosis of disease and assessment of disease activity. The data were compared with healthy individuals, patients with other renal and non-renal diseases, and patients with AAV in remission. 113 potential biomarkers were identified that differed significantly between active renal AAV and healthy individuals and patients with other chronic renal diseases. Of these, 58 could be sequenced. Sensitivity and specificity of models based on 18 sequenced biomarkers were validated using blinded urine samples of 40 patients with different renal diseases. Discrimination of AAV from other renal diseases in blinded samples was possible with 90% sensitivity and 86.7–90% specificity depending on the model. 10 patients with active AAV were followed for 6 months after initiation of treatment. Immunosuppressive therapy led to a change of the proteome toward “remission.” 47 biomarkers could be sequenced that underwent significant changes during therapy together with regression of clinical symptoms, normalization of C-reactive protein, and improvement of renal function. Proteomics analysis with capillary electrophoresis-MS represents a promising tool for fast identification of patients with active AAV, indication of renal relapses, and monitoring for ongoing active renal disease and remission without renal biopsy.Systemic vasculitides are a heterogeneous group of disorders with inflammation of the blood vessel wall as their common hallmark. These disorders often pose difficulties with regard to diagnosis and monitoring of disease activity both at the initial presentation and during follow-up. In one subgroup of small vessel vasculitides, the advent of anti-neutrophil cytoplasmic antibodies (ANCAs)1 in the 1980s not only provided a new pathogenetic concept but also a diagnostic marker (1, 2). In this group, the granulomatous ANCA-associated vasculitis (GAAV) (previously named Wegener granulomatosis) and the microscopic polyangiitis (MPA) share several common features, including pauci-immune focal crescentic necrotizing glomerulonephritis and often a pulmonary capillaritis (3). Because of the association with ANCA, these diseases (together with the Churg-Strauss syndrome) are sometimes collectively referred to as ANCA-associated vasculitis (AAV). Recently circulating endothelial cells have emerged as an important marker correlating with severity and activity of the systemic vasculitic disease, and their clinical use in small vessel AAV has been demonstrated (4, 5). Regarding renal involvement, which is found in up to 80–90% of the patients with AAV, activity is defined by kidney biopsy with pauci-immune necrotizing glomerulonephritis. Renal involvement may occur or recur at every point of the disease and the follow-up even if other organ involvement is controlled by immunosuppressive therapy. Early detection is important as renal prognosis depends on early administration of immunosuppressive treatment (6), and scarring and relapses increase the risk for terminal renal failure, which itself is a risk factor for patient survival. As kidney biopsy is invasive and the risk of bleeding increases with chronic renal damage, surrogate markers, such as rising creatinine, increasing proteinuria, and most importantly erythrocytes and erythrocyte cast in the urinary sediment, are used. However, these markers have limitations. Microhematuria might persist despite remission, proteinuria might increase despite improvement in renal function, and other renal diseases can also develop (7). Therefore, new markers for renal disease activity are eagerly awaited.Recently proteome analysis of urine has presented itself as a promising tool in the definition of chronic renal diseases (8, 9). We have developed an analytical platform for human urine analysis using capillary electrophoresis (CE) coupled on line to an ESI-TOF mass spectrometer (8, 10, 11). This approach permits the rapid analysis of the low molecular weight urinary proteome/peptidome in a single step and has enabled identification and validation of several urinary biomarkers in patients with different renal diseases (1114).In this study, we aimed toward identification of biomarkers for active AAV and response to immunosuppressive treatment. The results indicate that urinary proteome analysis enables differential diagnosis and monitoring of renal disease activity of AAV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号