首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   15篇
  国内免费   1篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   10篇
  2013年   4篇
  2012年   8篇
  2011年   15篇
  2010年   9篇
  2009年   11篇
  2008年   10篇
  2007年   17篇
  2006年   12篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   8篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   7篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有219条查询结果,搜索用时 328 毫秒
141.
Infection of the mammary gland with live bacteria elicits a pathogen-specific host inflammatory response. To study these host-pathogen interactions wild type mice, NF-kappaB reporter mice as well as caspase-1 and IL-1beta knockout mice were intramammarily challenged with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The murine mastitis model allowed to compare the kinetics of the induced cytokine protein profiles and their underlying pathways. In vivo and ex vivo imaging showed that E. coli rapidly induced NF-kappaB inflammatory signaling concomitant with high mammary levels of TNF-alpha, IL-1 alpha and MCP-1 as determined by multiplex analysis. In contrast, an equal number of S. aureus bacteria induced a low NF-kappaB activity concomitant with high mammary levels of the classical IL-1beta fragment. These quantitative and qualitative differences in local inflammatory mediators resulted in an earlier neutrophil influx and in a more extensive alveolar damage post-infection with E. coli compared to S. aureus. Western blot analysis revealed that the inactive proIL-1beta precursor was processed into pathogen-specific IL-1beta fragmentation patterns as confirmed with IL-1beta knockout animals. Additionally, caspase-1 knockout animals allowed to investigate whether IL-1beta maturation depended on the conventional inflammasome pathway. The lack of caspase-1 did not prevent extensive proIL-1beta fragmentation by either of S. aureus or E. coli. These non-classical IL-1beta patterns were likely caused by different proteases and suggest a sentinel function of IL-1beta during mammary gland infection. Thus, a key signaling nodule can be defined in the differential host innate immune defense upon E. coli versus S. aureus mammary gland infection, which is independent of caspase-1.  相似文献   
142.
143.
Severe pulmonary arterial hypertension (PAH) occurs in idiopathic form and in association with diverse diseases. The pathological hallmarks are distal smooth muscle hypertrophy, obliteration of small pulmonary arteriole lumens, and disorganized cellular proliferation in plexiform lesions. In situ thrombosis is also observed. A detailed understanding of the disease progression has been hampered by the absence of an animal model bearing all the pathological features of human disease. To create a model with these characteristics, we gave young (200-g) rats monocrotaline 1 wk following left pneumonectomy; controls with vehicle treatment or sham operation were also studied. In experimental rats, pulmonary arteries had distal smooth muscle hypertrophy and proliferative perivascular lesions. The lesions had a plexiform appearance, occurred early in disease development, and were composed of cells expressing endothelial antigens. Three-dimensional microangiography revealed severe vascular pruning and disorganized vascular networks. We found that expression of tissue factor (TF), the membrane glycoprotein that initiates coagulation, facilitates angiogenesis, and mediates arterial injury in the systemic circulation, was increased in the pulmonary arterioles and plexiform-like lesions of the rats. TF was also heavily expressed in the vessels and plexiform lesions of humans with pulmonary arterial hypertension. We conclude that plexiform-like lesions can be reproduced in rats, and this model will facilitate experiments to address controversies about the role of these lesions in PAH. Increased TF expression may contribute to the prothrombotic diathesis and vascular cell proliferation typical of human disease.  相似文献   
144.
Heparan sulfate proteoglycans (HSPGs) are complex and labile macromolecular moieties on the surfaces of cells that control the activities of a range of extracellular proteins, particularly those driving growth and regeneration. Here, we examine the biosynthesis of heparan sulfate (HS) sugars produced by cultured MC3T3-E1 mouse calvarial pre-osteoblast cells in order to explore the idea that changes in HS activity in turn drive phenotypic development during osteogenesis. Cells grown for 5 days under proliferating conditions were compared to cells grown for 20 days under mineralizing conditions with respect to their phenotype, the forms of HS core protein produced, and their HS sulfotransferase biosynthetic enzyme levels. RQ-PCR data was supported by the results from the purification of day 5 and day 20 HS forms by anionic exchange chromatography. The data show that cells in active growth phases produce more complex forms of sugar than cells that have become relatively quiescent during active mineralization, and that these in turn can differentially influence rates of cell growth when added exogenously back to preosteoblasts.  相似文献   
145.
Several methods to alter cell surface glycosaminoglycan (GAG) expression have previously been described, including treatments with chlorate to reduce the addition of charged sulfate groups, xyloside compounds to displace GAGs from their core proteins, and GAG lyases, such as heparinase and chondroitinase, to release GAG fragments from the cell layer. While these methods are useful in identifying cellular mechanisms which are dependent on GAGs, they must be stringently validated to assess results in the appropriate context. To determine the most useful technique for the evaluation of GAG function in osteogenesis, MG-63 osteosarcoma cells were systematically treated with these agents and evaluated for changes in cell surface GAGs using a TAT-EGFP fusion protein. TAT, a protein transduction domain from the HIV-1 virus, requires cell surface GAGs to traverse cell membranes. The EGFP component provides a method to assess protein entry into cells in both qualitative and quantitative tests. Here, TAT-EGFP transduction analysis confirmed radiochemical and physiological data that chlorate effectively disrupts GAG expression. TAT-EGFP entry into cells was also inhibited by the exogenous application of commercial heparin and GAGs extracted from MG-63 cells as well as by the pre-treatment of cells with chondroitinase ABC. However, neither heparinase III treatment nor the addition of exogenous chondroitin-6-sulfate affected TAT-EGFP entry into cells. In addition, xyloside-β-D-naphthol and xyloside-β-D-cis/trans-decahydro-2-naphthol treatment could not induce significant phenotypic change in these cells, and the unaffected TAT-EGFP transduction confirmed that this was due to an inability to efficiently prime GAG synthesis. The use of TAT-EGFP is thus a useful technique to specifically evaluate cell surface GAG expression in a simple, quantifiable manner, and avoids the complications involved with conventional radiochemical assays or analytical chromatography.  相似文献   
146.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   
147.

Background  

Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains.  相似文献   
148.

Introduction  

Cartilage degeneration driven by catabolic stimuli is a critical pathophysiological process in osteoarthritis (OA). We have defined fibroblast growth factor 2 (FGF-2) as a degenerative mediator in adult human articular chondrocytes. Biological effects mediated by FGF-2 include inhibition of proteoglycan production, up-regulation of matrix metalloproteinase-13 (MMP-13), and stimulation of other catabolic factors. In this study, we identified the specific receptor responsible for the catabolic functions of FGF-2, and established a pathophysiological connection between the FGF-2 receptor and OA.  相似文献   
149.
Characterization of the binding of a tumor necrosis factor (TNF) ligand to its receptor(s) is pivotal to understand how these proteins initiate signal transduction pathways. Unfortunately, kinetic elucidation of these interactions is strongly hampered by the multivalent nature of the binding partners. The interaction between TNF-related apoptosis-inducing ligand and its death receptors was analyzed using in-depth applications of surface plasmon resonance technology. Variations in receptor density and sensor chip type allowed us to manipulate the stoichiometry of the formed complex, and the rate constants describing the binding of trimeric TNF-related apoptosis-inducing ligand to only one receptor molecule were determined. Remarkably, the affinity of this trimer-monomer complex is in the picomolar range, and its dissociation very slow. Further analysis showed that the second and third receptor molecules bind with lower affinity to the preformed trimer-monomer complex. This together with results obtained with receptor activator of NF-κB ligand and B cell-activating factor strongly suggests that the binding of TNF family ligands to their receptors is initiated via the formation of a trimer-monomer complex that is sufficiently stable to allow binding of two additional receptor molecules. These results suggest that avidity does not play a significant role and thus provide new insight in how TNF ligands form the biologically important complexes with their receptors.Cytokines are signaling molecules involved in a range of biological processes and diseases. Cytokines and receptors belonging to the TNF superfamily have been a subject of interest for developing novel therapies for numerous diseases (1). These cytokines e.g. TNFα, TRAIL,1 RANKL, and BAFF are type II transmembrane proteins, and the extracellular C-terminal moiety can be released by specific proteases to form a soluble and active protein consisting of three subunits of each ∼20 kDa (2). As one of the most promising anticancer therapeutic candidates, recombinant human TRAIL (rhTRAIL; comprising amino acids 114–281) is able to kill a variety of cancer cells but not healthy cells. Currently, rhTRAIL is being tested in clinical phase II studies as an anticancer biopharmaceutical (3).Despite good progress on structural insight, analysis of the interactions between TNF ligand family members and their receptors lacks unambiguous results. This seems mainly caused by the multivalent character of these molecules, i.e. trimeric cytokines but also often dimeric receptor-Fc fusions, which lead to complex kinetic behavior. In a series of experiments, we obtained several indications that surface plasmon resonance (SPR) assays with rhTRAIL WT and receptor-specific variants (46) offer opportunities to establish a better characterization of their interactions with receptor molecules. For this, we meticulously applied SPR technology to elucidate the dynamics of complex formation of this important group of cytokines. We used rhTRAIL WT; a DR5-specific mutant, rhTRAILD269H/E195R; and death receptors DR4 and DR5 to develop the method, but we show with examples of other members of the TNF family that the method is generally applicable. Apart from presenting a method allowing unambiguous affinity determination, our results demonstrate that the binding mechanism of these cytokines is initiated via a high affinity interaction with the first receptor molecule, bringing the cytokine to the membrane.  相似文献   
150.
Despite progress in the treatment of acute myelogenous leukaemia (AML) the outcome often remains poor. Tumour necrosis factor related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent in many different types of tumours, but AML cells are relatively insensitive to TRAIL-induced apoptosis. Here we show that TRAIL-induced apoptosis in AML cells is predominantly mediated by death receptor 4 (DR4) and not DR5. Therefore, we constructed a variant of TRAIL (rhTRAIL-C3) that is a strong inducer of DR4-mediated apoptosis. TRAIL-C3 demonstrated much stronger pro-apoptotic activity than wild-type (WT) TRAIL in a panel of AML cell lines as well as in primary AML blasts. The higher pro-apoptotic potential was further enhanced when the TRAIL mutant was used in combination with BMS-345541, a selective inhibitor of inhibitor-κB kinases. It illustrates that combination of this TRAIL variant with chemotherapeutics or other targeted agents can kill AML with high efficacy. This may represent a major advantage over the currently used therapies that have serious toxic side effects. The high efficacy of rhTRAIL-C3 containing therapies may enable the use of lower drug doses to reduce the toxic side effects and improve patient outcome. Our findings suggest that the rational design of TRAIL variants that target DR4 potentiate the death-inducing activity of TRAIL and offer a novel therapeutic strategy for the treatment of AML.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号