首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3935篇
  免费   499篇
  2021年   52篇
  2019年   44篇
  2018年   49篇
  2017年   34篇
  2016年   69篇
  2015年   87篇
  2014年   111篇
  2013年   174篇
  2012年   196篇
  2011年   191篇
  2010年   115篇
  2009年   100篇
  2008年   156篇
  2007年   153篇
  2006年   136篇
  2005年   139篇
  2004年   151篇
  2003年   142篇
  2002年   120篇
  2001年   112篇
  2000年   129篇
  1999年   120篇
  1998年   61篇
  1997年   54篇
  1996年   60篇
  1995年   51篇
  1994年   49篇
  1993年   43篇
  1992年   88篇
  1991年   105篇
  1990年   83篇
  1989年   84篇
  1988年   89篇
  1987年   82篇
  1986年   69篇
  1985年   75篇
  1984年   61篇
  1983年   53篇
  1982年   33篇
  1981年   32篇
  1979年   44篇
  1978年   34篇
  1977年   29篇
  1976年   31篇
  1975年   36篇
  1974年   54篇
  1973年   45篇
  1972年   39篇
  1969年   28篇
  1968年   37篇
排序方式: 共有4434条查询结果,搜索用时 31 毫秒
121.
Protein kinase C (PKC) is a family of phospholipid-dependent kinases that is involved, along with calcium mobilization, in the activation of human platelets. Since interleukin-3 (IL-3) has been shown to act, in part, by activating PKC, we investigated the effect of IL-3 on PKC activity and content in human platelets. Exposure of platelets to 10 ng/ml of IL-3 was associated with a rapid (i.e., within 3 minutes) translocation of PKC activity and content from the cytosol to the membrane fraction. In addition, treatment with IL-3 effected a time-dependent down-regulation of PKC activity and content. We speculate that IL-3 may act as a modulator of PKC-dependent pathways in the human platelet.  相似文献   
122.
O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the final step in the biosynthesis of L-cysteine in Salmonella, viz., the conversion of O-acetyl-L-serine (OAS) and sulfide to L-cysteine and acetate. UV-visible spectra of OASS exhibit absorbance maxima at 280 and 412 nm with pH-independent extinction coefficients over the range 5.5-10.8. Addition of OAS to enzyme results in a shift in the absorbance maximum from 412 to 470 nm, indicating the formation of an alpha-aminoacrylate Schiff base intermediate [Cook, P. F., & Wedding, R. T. (1976) J. Biol. Chem. 251, 2023]. The spectrum of the intermediate is also pH independent from 5.5 to 9.2. The observed changes in absorbance at 470 nm at different concentrations of OAS were used to calculate a Kd of 3 microM for OAS at pH 6.9. As the pH decreases, the Kd increases an order of magnitude per pH unit. The 31P NMR signal of the bound PLP has a pH-independent chemical shift of 5.2 ppm in the presence and absence of OAS. These results indicate that the phosphate group is present as the dianion possibly salt-bridged to positively charged groups of the protein. In agreement with this, the resonance at 5.2 ppm has a line width of 20.5 Hz, suggesting that the cofactor is tightly bound to the protein. The sulfhydrylase was also shown to catalyze an OAS deacetylase activity in which OAS is degraded to pyruvate, ammonia, and acetate. The activity was detected by a time-dependent disappearance of the 470-nm absorbance reflecting the alpha-aminoacrylate intermediate. The rate of disappearance of the intermediate was measured at pH values from 7 to 9.5 using equal concentrations of OAS and OASS. The rate constant for disappearance of the intermediate decreases below a pK of 8.1 +/- 0.1, reflecting the deprotonation of the active-site lysine that originally formed the Schiff base with PLP in free enzyme. A possible mechanism for the deacetylase activity is presented where the lysine displaces alpha-aminoacrylate which decomposes to pyruvate and ammonia.  相似文献   
123.
Plasmalogens (1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine) are major phospholipids in many tissues and cells, particularly of neural origin. Using cultured C6 glioma cells and subcellular fractions isolated on Percoll gradients we investigated selectivity for esterification of several polyunsaturated fatty acids (PUFA) in the sn-2 position of plasmalogens compared to [1-14C]hexadecanol, representative of de novo synthesis of the ether-linked sn-1 position. In whole cells at a final concentration of 105 microM PUFA, 2-4 nmol plasmalogen/mg protein was labeled in 4 h and 10-14 nmol in 24 h, representing 8-15% and 35-50%, respectively, of initial plasmalogen mass. Incorporation of label from hexadecanol was lower than PUFA incorporation (20:5(n-3) greater than 20:4(n-6) greater than 18:3(n-3) much greater than 18:2(n-6)) suggesting deacylation-reacylation at the sn-2 position. Plasmalogens accounted for 50% of total cell ethanolamine phospholipids and 75% in plasma membrane. Using a novel, improved method for extraction of subcellular fractions containing Percoll, plasma membrane also was enriched in plasmalogen relative to microsomes (107.4 +/- 5.2 vs. 40.0 +/- 2.9 nmol/mg protein). Selectivity for esterification at the sn-2 position of plasmalogens with respect to chain length and unsaturation of the fatty acyl chain was similar in both subcellular fractions and reflected that of whole cells. Labeling of plasma membrane with PUFA and fatty alcohol lagged behind that of microsomes. Chase experiments in cells prelabeled with [1-14C]18:3(n-3) for 2 h showed no significant reduction of label in plasmalogen of any subcellular fraction although accumulation of label in the microsomal fraction was slowed initially. Reduction of plasmalogen label (40-50%) did occur in microsomes and plasma membrane when cells prelabeled for 24 h were switched to chase medium with or without chase fatty acid. Our data suggest that esterification of PUFA to plasmalogen may occur at the endoplasmic reticulum with subsequent translocation to plasma membrane resulting in accumulation of relatively stable pools of plasmalogen that are not readily accessible for deacylation-reacylation exchange with newly appearing PUFA. Alternatively, deacylation-reacylation may occur in a more stable phospholipid pool within the plasma membrane but would involve a slower process than at the endoplasmic reticulum.  相似文献   
124.
p53 is associated with p34cdc2 in transformed cells.   总被引:8,自引:0,他引:8       下载免费PDF全文
J Milner  A Cook    J Mason 《The EMBO journal》1990,9(9):2885-2889
The normal functioning of p53 is thought to involve p53 target proteins. We have previously identified a cellular 35 kd protein associated with p53 and now report evidence identifying this 35 kd protein as p34cdc2, product of the cell cycle control cdc2 gene. The association between p53 and p34cdc2 was detected in SV3T3 and T3T3 cell lines, both expressing the wild-type p53 phenotype, and in 3T3tx cells, expressing 'mutant' p53 phenotype. Binding of the mutant p53 phenotype with p34cdc2 was greatly reduced relative to wild-type. Complexes of p53-p34cdc2 may represent inactivation or activation of either component. The p34cdc2 kinase functions at cell cycle control points and is necessary for entry and passage through mitosis. It also operates in G1 and is involved in the commitment of cells into the proliferative cycle. Since we were unable to detect p53-p34cdc2 complexes in mitotic cells we propose that the interaction between p53 and p34cdc2 may be functional in cell growth control, possibly to promote or to suppress cell proliferation.  相似文献   
125.
An improved method for purifying O-acetylserine sulfhydrylase from Salmonella typhimurium is described as well as a new computer-controlled assay making use of the sulfide ion selective electrode. The purification method uses gradient elution from Q-Sepharose Fast Flow and phenyl-Sepharose columns to give 75 mg (50% yield) of the enzyme starting from 300 g of starting material in 3 days. The sulfide electrode assay makes use of sulfide and calomel electrodes attached to a signal buffer which serves as an impedance match. The output of the signal buffer is linked in parallel to a strip chart recorder and a Keithley Model 575 data acquisition and control system. The system 575 is interfaced to a Packard-Bell AT computer. In addition, two BASIC computer programs have been written to convert potential measured by the electrode to sulfide concentration and to convert the time course data to rates.  相似文献   
126.
We have previously reported that intralobular salivary duct cells contain an amiloride-sensitive Na+ conductance (probably located in the apical membranes). Since the amiloride-sensitive Na+ conductances in other tight epithelia have been reported to be controlled by extracellular (luminal) Na+, we decided to use whole-cell patch clamp techniques to investigate whether the Na+ conductance in salivary duct cells is also regulated by extracellular Na+. Using Na+-free pipette solutions, we observed that the whole-cell Na+ conductance increased when the extracellular Na+ was increased, whereas the whole-cell Na+ permeability, as defined in the Goldman equation, decreased. The dependency of the whole-cell Na+ conductance on extracellular Na+ could be described by the Michaelis-Menten equation with a K m of 47.3 mmol/1 and a maximum conductance (G max) of 2.18 nS. To investigate whether this saturation of the Na+ conductance with increasing extracellular Na+ was due to a reduction in channel activity or to saturation of the single-channel current, we used fluctuation analysis of the noise generated during the onset of blockade of the Na+ current with 200 μmol/l 6-chloro-3,5-diaminopyrazine-2-carboxamide. Using this technique, we estimated the single channel conductance to be 4 pS when the channel was bathed symmetrically in 150 mmol/l Na+ solutions. We found that Na+ channel activity, defined as the open probability multiplied by the number of available channels, did not alter with increasing extracellular Na+. On the other hand, the single-channel current saturated with increasing extracellular Na+ and, consequently, whole-cell Na+ permeability declined. In other words, the decline in Na+ permeability in salivary duct cells with increasing extracellular Na+ concentration is due simply to saturation of the single-channel Na+ conductance rather than to inactivation of channel activity. Received: 27 July 1995/Revised: 7 December 1995  相似文献   
127.
In our previous studies on sheep parotid secretory cells, we showed that the K+ current evoked by acetylcholine (ACh) was not carried by the high-conductance voltage- and Ca2+-activated K+ (BK) channel which is so conspicuous in unstimulated cells, notwithstanding that the BK channel is activated by ACh. Since several studies from other laboratories had suggested that the BK channel did carry the ACh-evoked K+ current in the secretory cells of the mouse mandibular gland, and that the current could be blocked with tetraethylammonium (TEA), a known blocker of BK channels, we decided to investigate the ACh-evoked K+ current in mouse cells more closely. We studied whether the ACh-evoked K+ current in the mouse is inhibited by TEA and quinine. Using the whole-cell patch-clamp technique and microspectrofluorimetric measurement of intracellular Ca2+, we found that TEA and quinine do inhibit the ACh-evoked K+ current but that the effect is due to inhibition of the increase in intracellular Ca2+ evoked by ACh, not to blockade of a K+ conductance. Furthermore, we found that the K+ conductance activated when ionomycin is used to increase intracellular free Ca2+ was inhibited only by quinine and not by TEA. We conclude that the ACh-evoked K+ current in mouse mandibular cells does not have the blocker sensitivity pattern that would be expected if it were being carried by the high-conductance, voltage- and Ca2+-activated K+ (BK) channel. The properties of this current are, however, consistent with those of a 40 pS K+ channel that we have reported to be activated by ACh in these cells [16]. Received: 9 January 1996/Revised: 17 April 1996  相似文献   
128.
A thick (ca. 40 m) sequence of coastal eolian sediments occurs on a narrow peninsula on the eastern end of the island of Madeira, located in the Eastern Atlantic at 33°N latitude. The sediments consist of black volcanic sands (with or without bioclasts) as well as clay units up to 2 m thick. A series of inceptisols (Eutrochrepts) and one alfisol (a Hapludalf) are developed in these sediments. Land snail shells and secondary carbonates, in the form of well-developed rhizoliths, calcretes, fissure-fills, and soil nodules, are present in abundance. The chronology of the sequence was determined by 14C and U---Th analyses of land snail shells and secondary carbonates and amino acid epimerization analysis of land snail shells. All sediments, including the clay units, are originally of eolian origin, derived from the beach to the south of the deposit, but some have been redeposited by colluviation. Temporal variation in the lithology of the sediments relates to variations in sea-level, with black sands being deposited during lower sea level stands and clays at the lowest. It is suggested that fine marine sediments, exposed during low sea-level stands, may also be the dominant source of silty or clayey units in other coastal eolian deposits in the subtropical Atlantic and Mediterranean.

The sequence spans from 200,000–300,000 years ago up to the 20th century. Sedimentation was discontinuous and often rapid; erosional hiatuses are present. During the Holocene, eolian sands started accumulating at 8200 yr B.P. during a transgressive phase and stopped at 4500 yr B.P. as sea level approached its present height. Colluviation increased dramatically following the first human settlement of the island in the 15th century and continued up to the 20th century, as dated by amino acid epimerization analysis of land snails. Earlier periods of colluviation were identified from the age distribution of land snail shells redeposited in younger colluvium.

Paleoenvironmental reconstruction was based mainly on soil and sediment features (including rhizolith morphology) and land snail faunas but also on stable isotope variations (13C, 18O) in land snails and secondary carbonates, pollen (generally not well preserved), and phytoliths. Most of the portion of the Middle Pleistocene represented in the sequence was characterized by moderately dry conditions, in comparison to the late Pleistocene and Holocene. During the last interglacial, relatively wet conditions occurred, wetter than during the Holocene interglacial. Moderately moist conditions were present during the accumulation of the thick unit dating to ca. 80,000 yr B.P. As sea level fell subsequent to this period, conditions appear to have become drier. Starting ca. 50,000–55,000 yr B.P., conditions were especially wet, but prior to the last glacial maximum, markedly arid conditions ensued. Toward the end of the last glacial, wet conditions returned and produced the best-developed soil preserved in the sequence. Moderately moist conditions occurred during the early to middle Holocene but apparently become slightly drier after 4500 yr B.P. The impact of human settlement can be seen in the loss of woody vegetation and enhanced gullying and colluviation during the last ca. 500 years.  相似文献   

129.
We have characterized an RNP complex that assembles in nuclear extracts on the negative regulator of splicing (NRS) element from Rous sarcoma virus. While no complex was detected by native gel electrophoresis under conditions that supported spliceosome assembly, gel filtration revealed a specific ATP-independent complex that rapidly assembled on NRS RNA. No complexes were formed on non-specific RNA. Unlike the non-specific H complex, factors required for NRS complex assembly are limiting in nuclear extract. The NRS complex was not detected in reactions containing ATP and pre-formed complexes were dissociated in the presence of ATP. In addition, the assembly process was sensitive to high salt but NRS complexes were salt stable once formed. Assembly of the NRS complex appears functionally significant since mutated NRS RNAs that fail to inhibit splicing in vivo are defective for NRS complex assembly in nuclear extract. The probable relationship of the NRS complex to spliceosomal complexes is discussed.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号