首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  2021年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2009年   3篇
  2008年   4篇
  2007年   9篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1969年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
11.
The purpose of our work was to investigate the functioning of K+ channels in protoplasts of laticifers of Hevea brasiliensis Muell. Arg., anastomosed into a network devoid of large central vacuoles, after tapping stress. Physiological functions such as proton pump activity and uptake of sucrose (a rubber precursor) were maintained, when the voltage-clamp method was used in vivo to record the whole-cell K+ current during the stress response.
A time-dependent inward current was induced in 50 m M KCl and rapidly inactivated (about 100 ms). The activation potential of this inward K+ channel was not closely dependent on Ek. This would be coherent with the 'valve model' of Schroeder and Fang (1991, Proc. Natl. Acad. Sci. USA 88: 11583–11587) involving the activation of a H+-pump accounting for the K+ uptake observed in laticiferous cells under stress. The activation half-time of outward currents was clearly voltage dependent: from about 350 to 60 ms for 125 and 155 mV, respectively. Time-dependent outward current sensitivity to 5 m M BaCl2 or CaCl2 or to 5 μ M Erythrosin B showed that the K+ channels could be Ca2+-dependent. Because of the positive values of the activation potential of the outward current, the possibility opens that an action potential exists, these cells being specialized for stress response.  相似文献   
12.
Serum corticosterone was previously studied in numerous elasmobranch fishes (sharks, skates and rays), but the role of this steroid, widespread throughout many taxa, has yet to be defined. The goal of this study was to test whether corticosterone varied in response to acute and chronic capture stress, and across the reproductive cycle in the bonnethead shark, Sphyrna tiburo, and Atlantic stingray, Dasyatis sabina. Serum corticosterone in S. tiburo increased following capture and again 24 h post-capture, possibly caused by interference with 1alpha-hydroxycorticosterone, the primary stress hormone in elasmobranchs. Higher serum concentrations in males compared to females were observed in both species. Variations in corticosterone also occurred during the reproductive cycle in both species. Consistent with other taxa, elevations in male bonnethead sharks and stingrays coincided with peak testicular development and mating. Elevations in female bonnethead sharks occurred from the time of mating through sperm storage into early gestation. In contrast, corticosterone levels in female stingrays were low during their protracted mating season, but elevated through late gestation and parturition. These results indicate that corticosterone has a limited role, if any, in acute and chronic stress associated with capture in S. tiburo, but likely has physiological functions associated with its glucocorticoid properties across the reproductive cycle of both species.  相似文献   
13.
Antennapedia and other homeoproteins have the unique ability to efficiently translocate across biological membranes, a property that is mediated by the third helix of the homeodomain. To analyze the effects of sequence divergence in the homeodomain, we have compared the cellular uptake efficiencies and interaction properties in a membrane-mimicking environment of four peptides corresponding to the third helix sequence of Antennapedia, Engrailed-2, HoxA-13, and Knotted-1. NMR studies revealed that these peptides adopt helical conformations in SDS micelles. Their localization with respect to the micelle was investigated using Mn(2+) as a paramagnetic probe. Peptides are positioned parallel to the micelle surface, but subtle differences in the depth of immersion were observed. Using a recently developed method for quantification of CPP cellular uptake based on MALDI-TOF mass spectrometry, all of these peptides were found to translocate into cells but with large differences in their uptake efficiencies. The peptide with the highest uptake efficiency was found to be the least deeply inserted within the micelle, indicating that electrostatic surface interactions may be a major determinant for membrane translocation. A new cell-penetrating peptide derived from Knotted-1 homeodomain with improved uptake properties compared to penetratin is introduced here.  相似文献   
14.
Blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. We describe here the structure and the biological action of a new cyclic peptide derived from vascular endothelial growth factor (VEGF). This 17-amino acid molecule designated cyclopeptidic vascular endothelial growth inhibitor (cyclo-VEGI, CBO-P11) encompasses residues 79-93 of VEGF which are involved in the interaction with VEGF receptor-2. In aqueous solution, cyclo-VEGI presents a propensity to adopt a helix conformation that was largely unexpected because only beta-sheet structures or random coil conformations have been observed for macrocyclic peptides. Cyclo-VEGI inhibits binding of iodinated VEGF165 to endothelial cells, endothelial cells proliferation, migration, and signaling induced by VEGF165. This peptide also exhibits anti-angiogenic activity in vivo on the differentiated chicken chorioallantoic membrane. Furthermore, cyclo-VEGI significantly blocks the growth of established intracranial glioma in nude and syngeneic mice and improves survival without side effects. Taken together, these results suggest that cyclo-VEGI is an attractive candidate for the development of novel angiogenesis inhibitor molecules useful for the treatment of cancer and other angiogenesis-related diseases.  相似文献   
15.
The biological function of anatomical specializations in the mechanosensory lateral line of elasmobranch fishes is essentially unknown. The gross and histological features of the lateral line in the Atlantic stingray, Dasyatis sabina, were examined with special reference to its role in the localization and capture of natural invertebrate prey. Superficial neuromasts are arranged in bilateral rows near the dorsal midline from the spiracle to the posterior body disk and in a lateral position along the entire length of the tail. All dorsal lateral line canals are pored, contain sensory neuromasts, and have accessory lateral tubules that most likely function to increase their receptive field. The pored ventral canal system consists of the lateral hyomandibular canal along the disk margin and the short, separate mandibular canal on the lower jaw. The extensive nonpored and relatively compliant ventral infraorbital, supraorbital, and medial hyomandibular canals form a continuous complex on the snout, around the mouth, and along the abdomen. Vesicles of Savi are small mechanosensory subdermal pouches that occur in bilateral rows only along the ventral midline of the rostrum. Superficial neuromasts are best positioned to detect water movements along the transverse body axis such as those produced by tidal currents, conspecifics, or predators. The pored dorsal canal system is positioned to detect water movements created by conspecifics, predators, or possibly distortions in the flow field during swimming. Based upon the stingray lateral line morphology and feeding behavior, we propose the Mechanotactile Hypothesis, which states that the ventral nonpored canals and vesicles of Savi function as specialized tactile mechanoreceptors that facilitate the detection and capture of small benthic invertebrate prey. J. Morphol. 238:1–22, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
16.
Herbivory is a fundamental process determining reef resilience, and while algal farming damselfishes can help shape benthic assemblages, an understanding of their contribution to areas outside of defended territories is relatively unexplored. Here, we demonstrate how the farming damselfish Stegastes marginatus plays a dual role in benthic structuring by 1) contributing to persistence of the invasive macroalga Acanthophora spicifera within a Hawaiian marine protected area, where the macroalga occurred exclusively inside Stegastes territories, and 2) behaving as an opportunistic browser of the exotic alga outside their territorial borders. Greater than 50% of the biomass of tethered A. spicifera was consumed within one-hour when placed outside Stegastes territories, compared to <5% lost from tethers within territories or herbivore exclusion cages. In situ remote video revealed that tethered A. spicifera located outside territories was grazed primarily by the surgeonfish Acanthurus nigrofuscus (∼68% of total bites) and, surprisingly, by S. marginatus (∼27% of total bites) that left their territories to feed on this resource on 107 occasions during 400 min of filming. Further, for over half of those occurrences where S. marginatus grazed on the tethered macroalga outside of territories, they fed alongside conspecifics and other species, displaying little of the aggressiveness that characterizes this damselfish. These results show that S. marginatus plays a wider role in determining benthic assemblages than previously recognized, acting both as cultivators of a canopy-forming invasive macroalga within their territories, and as opportunistic browsers in neighboring sites. Consequently, S. marginatus can affect benthic species composition across their territory borders. These results provide a rare example of interspecific facilitation of an exotic alga by an indigenous marine fish. Accounting for fish behaviors more broadly is important to further our understanding of ecological processes that shape reef ecosystems to improve management of MPAs that often support extensive farming damselfish populations.  相似文献   
17.
Feeding behavior and reproduction are coordinately regulated by the brain via neurotransmitters, circulating hormones, and neuropeptides. Reduced feeding allows animals to engage in other behaviors important for fitness, including mating and parental care. Some fishes cease feeding for weeks at a time in order to provide care to their young by brooding them inside the male or female parent's mouth. Maternal mouthbrooding is known to impact circulating hormones and subsequent reproductive cycles, but neither the full effects of food deprivation nor the neural mechanisms are known. Here we ask what effects mouthbrooding has on several physiological processes including gonad and body mass, brain neuropeptide and receptor gene expression, and circulating steroid hormones in a mouthbrooding cichlid species, Astatotilapia burtoni. We ask whether any observed changes can be explained by food deprivation, and show that during mouthbrooding, ovary size and circulating levels of androgens and estrogens match those seen during food deprivation. Levels of gonadotropin-releasing hormone 1 (GnRH1) mRNA in the brain were low in food-deprived females compared to controls and in mouthbrooding females compared to gravid females. Levels of mRNA encoding two peptides involved in regulating feeding, hypocretin and cholecystokinin, were increased in the brains of food-deprived females. Brain mRNA levels of two receptors, GnRH receptor 2 and NPY receptor Y8c, were elevated in mouthbrooding females compared to the fed condition, but NPY receptor Y8b mRNA was differently regulated by mouthbrooding. These results suggest that many, but not all, of the characteristic physiological changes that occur during mouthbrooding are consequences of food deprivation.  相似文献   
18.
One hundred and thirty-one patients on long-term hemodialysis were examined for the presence of clinical symptoms and signs, and for the effects of dialytic age, age and sex on uremic neuropathy. According to dialysis age, the patients were divided into three subgroups: low dialysis age, < 5 years of dialysis (n = 58); intermediate dialysis age, 5-10 years of hemodialysis (n = 39); and high dialysis age, > 10 years of dialysis (n = 34). Two patient subgroups were differentiated according to mean age of 53.2 years: younger (n = 57) and older (n = 74). Clinical grading of uremic neuropathy was based on Nielsen's criteria. The most common symptoms were restless legs syndrome (47%) and cramps (51%). Sensory symptoms were less common in patients on long-term hemodialysis, most common of them being paresthesia (29%) and burning feet syndrome (28%). Abnormal Achilles reflex (53%) and impaired vibration sense (59%) were the most common clinical signs. Clinically manifested uremic neuropathy was present in more than 80% of all study patients, i.e. mild in 41%, and moderate to severe forms of uremic neuropathy according to Nielsen's criteria in 39%. There was no evident effect of dialytic age and sex on the clinical course of uremic neuropathy, however, there was a clear impact of age. It is concluded that long-term hemodialysis does not influence the clinical course of uremic neuropathy unlike evident deterioration of electroneurophysiologic findings.  相似文献   
19.
Bacteria exchange genetic material by horizontal gene transfer (HGT). To evaluate the impact of HGT on Escherichia coli genome plasticity, 19 commensal strains collected from the intestinal floras of humans and animals were analyzed by microarrays. Strains were hybridized against an oligoarray containing 2700 E. coli K12 chromosomal genes. A core (genes shared among compared genomes) and a flexible gene pool (genes unique for each genome) have been identified. Analysis of hybridization signals evidenced 1015 divergent genes among the 19 strains and each strain showed a specific genomic variability pattern. Four hundred and fifty-eight genes were characterized by higher rates of interstrain variation and were considered hyperdivergent. These genes are not randomly distributed onto the chromosome but are clustered in precise regions. Hyperdivergent genes belong to the flexible gene pool and show a specific GC content, differing from that of the chromosome, indicating acquisition by HGT. Among these genes, those involved in defense mechanisms and cell motility as well as intracellular trafficking and secretion were far more represented than others. The observed genome plasticity contributes to the maintenance of genetic diversity and may therefore be a source of evolutionary adaptation and survival.  相似文献   
20.
Summary— The effects of vitamin D on the intramuscular distribution of total and bound calcium, phosphate and on available cytosolic calcium, were investigated in skeletal muscle. Total calcium and phosphorus were measured on ashed subcellular fractions of muscles from vitamin D-repleted and vitamin D-deprived rats. The variations in available calcium were followed by determining the activities of calcium-sensitive enzymes in isolated cytosol. Bound-calcium was revealed ultra-microscopically by pyroantimonate. In vitamin D-repleted muscles, the pyroantimonate method revealed specific areas of intense bound-calcium deposition: the myofibrils, where they formed pronounced lines parallel to the Z-bands. In vitamin D-deficient muscles, the calcium-pyroantimonate deposits appeared clearly reduced. This loss was accompanied by a marked reduction in total calcium and phosphorus in all the subcellular fractions, as compared to vitamin D-repleted muscles. Unexpectedly, the activity of the Ca2+-activated isocitrate-dehydrogenase was increased in the cytosol, while that of the Ca2+-inhibited pyruvate-kinase decreased. Prolonged vitamin D-administration to vitamin D-repleted rats led to an intensification of calcium-pyroantimonate deposits and a general increase in total calcium and phosphorus, but no change in the cytosolic Ca2+-sensitive enzyme activities. Cessation of vitamin D-administration to vitamin D-repleted rats produced a regression of calcium-pyroantimonate deposits, a general decrease of total calcium and phosphate levels, and stimulation of the Ca2+-activated isocitrate-dehydrogenase accompanied by lowering of the Ca2+-inhibited pyruvate-kinase. The results clearly indicate a correlation between vitamin D-repletion and the total and bound calcium content of skeletal muscle. In addition, they demonstrate an apparent contradiction between the decrease of total and bound calcium, and the activities of cytosolic Ca2+ sensitive enzymes during vitamin D-deprivation, which can only be explained by an increase in available calcium. It is suggested that vitamin D stimulates intramuscular mechanisms tending to lower available calcium by inactivating the cation via the formation of calcium chelates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号