首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   15篇
  2023年   2篇
  2022年   5篇
  2021年   15篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   9篇
  2016年   4篇
  2015年   17篇
  2014年   18篇
  2013年   25篇
  2012年   34篇
  2011年   30篇
  2010年   22篇
  2009年   27篇
  2008年   34篇
  2007年   29篇
  2006年   32篇
  2005年   29篇
  2004年   29篇
  2003年   20篇
  2002年   21篇
  2001年   1篇
  2000年   7篇
  1999年   5篇
  1998年   9篇
  1997年   9篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有479条查询结果,搜索用时 14 毫秒
11.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
12.
13.
The P64k protein of Neisseria meningitidis has been reported as an immunological carrier for weak immunogens. This investigation was aimed at characterizing the T-cell response produced in primed mice and at identifying T helper cell epitopes within this molecule. BALB/c mice subcutaneously immunized with the recombinant antigen provided inguinal lymph node cells (LNC) that proliferated in the presence of P64k in a dose-dependent manner. Proliferating cells secreted IL-4 while the concentration of IL-12 remained unaltered in the culture supernatant. By testing a panel of 59 overlapping synthetic peptides spanning the entire sequence of the antigen a T-cell determinant was localized. Prime-boost and lymphoproliferation experiments, conducted with highly purified synthetic peptides, confirmed that the segment including amino acids 470-485 comprises a T-cell epitope within the P64k molecule.  相似文献   
14.
This study analysed the seasonal and intradiurnal behaviour of fungal spores from Alternaria and Cladosporium on air samples collected in the city of Almeria (SE Spain), as well as the influence that meteorological parameters have on the concentration of these type of spores. Aerobiological sampling was made during four years (1998-2001) using a Hirst-type volumetric spore trap. Spores of Alternaria and Cladosporium were detected throughout the year, reaching the highest concentrations from May to October. The diurnal patterns of these taxons reflected a presence similar of spores during a 24 h period, with values horary close to 4% of total sampling daily. The correlations show a positive association with temperature, hours of sunshine and accumulate rainfall, but negative with daily rainfall.  相似文献   
15.
Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.  相似文献   
16.
Actin filaments transiently associate with the endocytic machinery during clathrin-coated vesicle formation. Although several proteins that might mediate or regulate this association have been identified, in vivo demonstration of such an activity has not been achieved. Huntingtin interacting protein 1R (Hip1R) is a candidate cytoskeletal-endocytic linker or regulator because it binds to clathrin and actin. Here, Hip1R levels were lowered by RNA interference (RNAi). Surprisingly, rather than disrupting the transient association between endocytic and cytoskeletal proteins, clathrin-coated structures (CCSs) and their endocytic cargo became stably associated with dynamin, actin, the Arp2/3 complex, and its activator, cortactin. RNAi double-depletion experiments demonstrated that accumulation of the cortical actin-endocytic complexes depended on cortactin. Fluorescence recovery after photobleaching showed that dynamic actin filament assembly can occur at CCSs. Our results provide evidence that Hip1R helps to make the interaction between actin and the endocytic machinery functional and transient.  相似文献   
17.
Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n-3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n-3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.  相似文献   
18.
The Ejl amidase is coded by Ej-1, a temperate phage isolated from the atypical pneumococcus strain 101/87. Like all the pneumococcal cell-wall lysins, Ejl has a bimodular organization; the catalytic region is located in the N-terminal module, and the C-terminal module attaches the enzyme to the choline residues of the pneumococcal cell wall. The structural features of the Ejl amidase, its interaction with choline, and the structural changes accompanying the ligand binding have been characterized by CD and IR spectroscopies, differential scanning calorimetry, analytical ultracentrifugation, and FPLC. According to prediction and spectroscopic (CD and IR) results, Ejl would be composed of short beta-strands (ca. 36%) connected by long loops (ca. 17%), presenting only two well-predicted alpha-helices (ca. 12%) in the catalytic module. Its polypeptide chain folds into two cooperative domains, corresponding to the N- and C-terminal modules, and exhibits a monomer <--> dimer self-association equilibrium. Choline binding induces small rearrangements in Ejl secondary structure but enhances the amidase self-association by preferential binding to Ejl dimers and tetramers. Comparison of LytA, the major pneumococcal amidase, with Ejl shows that the sequence differences (15% divergence) strongly influence the amidase stability, the organization of the catalytic module in cooperative domains, and the self-association state induced by choline. Moreover, the ligand affinity for the choline-binding locus involved in regulation of the amidase dimerization is reduced by a factor of 10 in Ejl. Present results evidence that sequence differences resulting from the natural variability found in the cell wall amidases coded by pneumococcus and its bacteriophages may significantly alter the protein structure and its attachment to the cell wall.  相似文献   
19.
The Tinto river in Spain, with its high acidity and heavy metal concentrations (As, Cu, Cr, Zn), is an example of an environment hostile to life. Yet despite these extreme conditions, the site possesses a great diversity of eukaryotic life forms. We report the isolation of a filamentous fungus able to grow at 200 mM arsenic ( approximately 15 000 p.p.m.), i.e. a concentration 20-fold above that withstood by the reference microorganisms Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans, and 200 times greater than that tolerated by Aspergillus niger. Based on morphological, physiological and genotypic criteria, the strain belongs to the genus Aspergillus. High concentrations of the metalloid induced vacuolation, suggesting that this organelle is someway connected to arsenic tolerance. Concentrations that are lethal to other organisms do not stress Aspergillus sp. P37. The fungus was capable of removing arsenic from culture media. In addition to arsenic hyper-resistance, it also displayed a polyresistant phenotype to copper and chromium.  相似文献   
20.
The bacterial Na+(Li+)/H+ antiporter NhaA has been expressed in the yeast Saccharomyces cerevisiae. NhaA was present in both the plasma membrane and internal membranes, and it conferred lithium but not sodium tolerance. In cells containing the yeast Ena1-4 (Na+, Li+) extrusion ATPase, the extra lithium tolerance conferred by NhaA was dependent on a functional vacuolar H+ ATPase and correlated with an increase of lithium in an intracellular pool which exhibited slow efflux of cations. In yeast mutants without (Na+, Li+) ATPase, lithium tolerance conferred by NhaA was not dependent on a functional vacuolar H+ ATPase and correlated with a decrease of intracellular lithium. NhaA was able to confer sodium tolerance and to decrease intracellular sodium accumulation in a double mutant devoid of both plasma membrane (Na+, Li+) ATPase and vacuolar H+ ATPase. These results indicate that the bacterial antiporter NhaA expressed in yeast is functional at both the plasma membrane and the vacuolar membrane. The phenotypes conferred by its expression depend on the functionality of plasma membrane (Na+, Li+) ATPase and vacuolar H+ ATPase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号