首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   33篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   17篇
  2014年   28篇
  2013年   23篇
  2012年   29篇
  2011年   30篇
  2010年   13篇
  2009年   12篇
  2008年   18篇
  2007年   12篇
  2006年   19篇
  2005年   12篇
  2004年   12篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
61.
Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.  相似文献   
62.
Climate projections propose that drought stress will become challenging for establishing trees. The magnitude of stress is dependent on tree species, provenance, and most likely also highly influenced by soil quality. European Beech (Fagus sylvatica) is of major ecological and economical importance in Central European forests. The species has an especially wide physiological and ecological amplitude enabling growth under various soil conditions within its distribution area in Central Europe. We studied the effects of extreme drought on beech saplings (second year) of four climatically distinct provenances growing on different soils (sandy loam and loamy sand) in a full factorial pot experiment. Foliar δ13C, δ15N, C, and N as well as above‐ and belowground growth parameters served as measures for stress level and plant growth. Low‐quality soil enhanced the effect of drought compared with qualitatively better soil for the above‐ and belowground growth parameters, but foliar δ13C values revealed that plant stress was still remarkable in loamy soil. For beeches of one provenance, negative sandy soil effects were clearly smaller than for the others, whereas for another provenance drought effects in sandy soil were sometimes fatal. Foliar δ15N was correlated with plant size during the experiment. Plasticity of beech provenances in their reaction to drought versus control conditions varied clearly. Although a general trend of declining growth under control or drought conditions in sandy soil was found compared to loamy soil, the magnitude of the effect of soil quality was highly provenance specific. Provenances seemed to show adaptations not only to drought but also to soil quality. Accordingly, scientists should integrate information about climatic pre‐adaptation and soil quality within the home range of populations for species distribution modeling and foresters should evaluate soil quality and climatic parameters when choosing donor populations for reforestation projects.  相似文献   
63.
C Csaki  C Szabo  Z Benyo  M Reivich  A G Kovach 《Life sciences》1991,49(15):1087-1094
The effect of formyl-Met-Leu-Phe- (fMLP-) activated feline neutrophil granulocytes on endothelium-dependent and independent relaxations was studied in the middle cerebral artery of the cat in vitro. Endothelium-dependent relaxations caused by acetylcholine and ATP were markedly inhibited after 30 minutes of incubation of the vessels with neutrophils (5000 cells/microliter) in the presence of 5 microM fMLP, followed by a replacement of the bath solution in order to remove the neutrophils from the medium. Direct vasorelaxations in response to the nitric oxide donor compound SIN-1, however, remained unchanged. Both neutrophils and fMLP caused transient contractions during the incubation period. The present study provides direct evidence for the ability of activated neutrophils to cause an inhibition of vascular endothelium-dependent responses in vitro.  相似文献   
64.
65.
Background: There is increasing evidence that mitochondria – owning a high degree of autonomy within the cell – might represent the target organelles of the myocardial protection afforded by ischemic preconditioning. It was the aim of the study to investigate a possible subcellular correlate to ischemic preconditioning at the mitochondrial level. In addition, we tested whether this protection depends on mitochondrial ATP-dependent potassium channels (K ATP) and an might involve an attenuation of mitochondrial ATP hydrolysis during sustained anoxia.Methods and Results: Sustained anoxia (A, 14 min) and reoxygenation (R) completely inhibited state 3 and state 4 respiration of isolated ventricular mitochondria from Wistar rats. An antecedent brief anoxic incubation (4 min) followed by reoxygenation (2 min) prevented this loss of mitochondrial function. The protection afforded by anoxic preconditioning could be mimicked by the K ATP opener diazoxide (30 μmol/l) and was completely inhibited by the K ATP blocker 5-hydroxydecanoic acid (300 μmol/l). Structural mitochondrial integrity, as estimated from externalization of the mitochondrial enzymes creatine kinase and glutamateoxalacetate transaminase, remained unchanged between the groups, as did mitochondrial ATP loss during anoxia.Conclusion: For the first time, we provide direct evidence for a subcellular preconditioning-like functional mitochondrial adaptation to sustained anoxia. This effect apparently depends on opening of KATP but is independent of ATP preservation.  相似文献   
66.
It has been suggested that male achievement in sports and athletics is correlated with a putative measure of prenatal testosterone the 2nd to 4th digit ratio (2D:4D). It is not known whether this association also extends to females, or whether the association results from an effect of testosterone on behavior (such as exercise frequency) or on physical fitness. Here, we report for the first time data from two studies which consider associations between 2D:4D and physical fitness in females in addition to males: Study I--in a sample of teenage boys (n = 114) and girls (n = 175), their 'physical education grade' was negatively associated with 2D:4D of the right hand (boys), and right and left hand (girls), and Study II-among a sample of young men (n = 102) and women (n = 77), a composite measure of physical fitness was negatively related to right hand 2D:4D in men and left hand 2D:4D in women. We conclude that 2D:4D is negatively related to physical fitness in both men and women. In Study II, there was evidence that the relationship between physical fitness and 2D:4D in men was mediated through an association with exercise frequency. Thus, 2D:4D in males may be a negative correlate of frequent exercise which then relates to achievement in sports and athletics.  相似文献   
67.
A hallmark of prion diseases in mammals is a conformational transition of the cellular prion protein (PrP(C)) into a pathogenic isoform termed PrP(Sc). PrP(C) is highly conserved in mammals, moreover, genes of PrP-related proteins have been recently identified in fish. While there is only little sequence homology to mammalian PrP, PrP-related fish proteins were predicted to be modified with N-linked glycans and a C-terminal glycosylphosphatidylinositol (GPI) anchor. We biochemically characterized two PrP-related proteins from zebrafish in cultured cells and show that both zePrP1 and zeSho2 are imported into the endoplasmic reticulum and are post-translationally modified with complex glycans and a C-terminal GPI anchor.  相似文献   
68.
69.
12-Oxophytodienoate reductase 3 (OPR3) is a FMN-dependent oxidoreductase that catalyzes the reduction of the cyclopentenone (9S,13S)-12-oxophytodienoate [(9S,13S)-OPDA] to the corresponding cyclopentanone in the biosynthesis of the plant hormone jasmonic acid. In vitro, however, OPR3 reduces the jasmonic acid precursor (9S,13S)-OPDA as well as the enantiomeric (9R,13R)-OPDA, while its isozyme OPR1 is highly selective, accepting only (9R,13R)-OPDA as a substrate. To uncover the molecular determinants of this remarkable enantioselectivity, we determined the crystal structures of OPR1 and OPR3 in complex with the ligand p-hydroxybenzaldehyde. Structural comparison with the OPR1:(9R,13R)-OPDA complex and further biochemical and mutational analyses revealed that two active-site residues, Tyr78 and Tyr246 in OPR1 and Phe74 and His244 in OPR3, are critical for substrate filtering. The relatively smaller OPR3 residues allow formation of a wider substrate binding pocket that is less enantio-restrictive. Substitution of Phe74 and His244 by the corresponding OPR1 tyrosines resulted in an OPR3 mutant showing enhanced, OPR1-like substrate selectivity. Moreover, sequence analysis of the OPR family supports the filtering function of Tyr78 and Tyr246 and allows predictions with respect to substrate specificity and biological function of thus far uncharacterized OPR isozymes. The discovered structural features may also be relevant for other stereoselective proteins and guide the rational design of stereospecific enzymes for biotechnological applications.  相似文献   
70.
Ezrin, radixin and moesin are a family of proteins that provide a link between the plasma membrane and the cortical actin cytoskeleton. The regulated targeting of ezrin to the plasma membrane and its association with cortical F-actin are more than likely functions necessary for a number of cellular processes, such as cell adhesion, motility, morphogenesis and cell signalling. The interaction with F-actin was originally mapped to the last 34 residues of ezrin, which correspond to the last three helices (αB, αC and αD) of the C-terminal tail. We set out to identify and mutate the ezrin/F-actin binding site in order to pinpoint the role of F-actin interaction in morphological processes as well as signal transduction. We report here the generation of an ezrin mutant defective in F-actin binding. We identified four actin-binding residues, T576, K577, R579 and I580, that form a contiguous patch on the surface of the last helix, αD. Interestingly, mutagenesis of R579 also eliminated the interaction of band four-point one, ezrin, radixin, moesin homology domains (FERM) and the C-terminal tail domain, identifying a hotspot of the FERM/tail interaction. In vivo expression of the ezrin mutant defective in F-actin binding and FERM/tail interaction (R579A) altered the normal cell surface structure dramatically and inhibited cell migration. Further, we showed that ezrin/F-actin binding is required for the receptor tyrosine kinase signal transfer to the Ras/MAP kinase signalling pathway. Taken together, these observations highlight the importance of ezrin/F-actin function in the development of dynamic membrane/actin structures critical for cell shape and motility, as well as signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号