首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   16篇
  2023年   2篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   9篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   23篇
  2012年   20篇
  2011年   26篇
  2010年   9篇
  2009年   12篇
  2008年   10篇
  2007年   12篇
  2006年   5篇
  2005年   5篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1989年   4篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1968年   2篇
  1933年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
91.
During chronic limb ischemia, oxidative damage and inflammation are described. Besides oxidative damage, the decrease of tissue oxygen levels is followed by several adaptive responses. The purpose of this study was to determine whether supplementation with N-acetylcysteine (NAC) is effective in an animal model of chronic limb ischemia. Chronic limb ischemia was induced and animals were treated once a day for 30 consecutive days with NAC (30 mg/kg). After this time clinical scores were recorded and soleus muscle was isolated and lactate levels, oxidative damage and inflammatory parameters were determined. In addition, several mechanisms associated with hypoxia adaptation were measured (vascular endothelial growth factor - VEGF and hypoxia inducible factor - HIF levels, ex vivo oxygen consumption, markers of autophagy/mitophagy, and mitochondrial biogenesis). The adaptation to chronic ischemia in this model included an increase in muscle VEGF and HIF levels, and NAC was able to decrease VEGF, but not HIF levels. In addition, ex vivo oxygen consumption under hypoxia was increased in muscle from ischemic animals, and NAC was able to decrease this parameter. This effect was not mediated by a direct effect of NAC on oxygen consumption. Ischemia was followed by a significant increase in muscle myeloperoxidase activity, as well as interleukin-6 and thiobarbituric acid reactive substances species levels. Supplementation with NAC was able to attenuate inflammatory and oxidative damage parameters, and improve clinical scores. In conclusion, NAC treatment decreases oxidative damage and inflammation, and modulates oxygen consumption under hypoxic conditions in a model of chronic limb ischemia.  相似文献   
92.
To study the adaptative capabilities of the retinotectal system in birds, the primordium of one optic tectum from 12-somite embryos of Japanese quail was transplanted either homotopically, to replace the ablated same primordium, or heterotopically, to replace the ablated dorsal diencephalon in White Leghorn chick embryos of the same stage. The quail nucleolar marker was used to recognize the transplants. The cytoarchitecture of the tecta and the retinal projections from the eye contralateral to the graft were studied on the 17th or 18th day of incubation in the chimeric embryos by autoradiographic or horseradish peroxidase tracing methods. Morphometric analysis was applied to evaluate the percentage of the tectal surface receiving optic projections. It was observed that: (i) quail mesencephalic alar plate can develop a fully laminated optic tectum even when transplanted heterotopically; (ii) retinal ganglion cells from the chick not only recognize the tectal neurons of the quail as their specific targets in homotopic grafts, but the optic fibers deviate to innervate the heterotopically grafted tectum; (iii) in the presence of a graft, the chick retina is unable to innervate a tectal surface of similar or larger size than that of the control tectum; (iv) tectal regions devoid of optic projections, whether formed by donor or by host cells, always present an atrophic lamination; (v) the diencephalic supernumerary optic tectum competes with and prevails over the host tectum as a target for optic fiber terminals.  相似文献   
93.
The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans.  相似文献   
94.
Artepillin C is the major constituent of green propolis, one of the most consumed products in popular medicine owing to its therapeutic effects, including antitumor activity. Artepillin C differs from other cinnamic acid derivatives due to the presence of two prenylated groups in its structure, believed to enhance access to the cell membrane and resulting in pharmacological activity. The membrane outer leaflet of tumor cells is exposed to an acidic extracellular environment, which could modulate the protonation state of antitumor drugs and hence their interaction with the cell membrane. Herein, we investigated the interaction of Artepillin C with Langmuir monolayers and giant unilamellar vesicles (GUVs) of 1,2?dipalmitoyl?sn?glycerol?3?phosphocholine (DPPC) used as model membranes, in physiological and acidic environments. We observed that protonation of the carboxyl group of Artepillin C is essential for the interaction, with larger shifts induced in the surface pressure isotherms of DPPC monolayers in comparison with deprotonated Artepillin C. Also observed was a decrease in lipid packing inferred from the compressibility modulus and Brewster angle microscopy (BAM) images for monolayers on acidic subphases. Results with microscopy techniques on GUVs confirmed that.Artepillin C causes a curvature stress of the lipid bilayer only in its neutral state, causing the GUVs to burst. The stronger effects of neutral Artepillin C on both monolayers and GUVs were maintained when the ionic strength was increased. Taken together, the results indicate that Artepillin C may have preferential attachment to a more acidic environment which might be an important feature for its antitumor activity.  相似文献   
95.
96.
Garter snakes (genus Thamnophis) rely mainly on chemical cues to recognize prey, but in some of the more aquatic species visual stimuli may suffice to elicit predatory attacks. However, the only visual components known to be involved in the visual release of attacks are movement and contrast with background. We explored other visual components by presenting visual models varying only in size, shape, or path of movement to an aquatically specialized species, Thamnophis melanogaster. Snakes responded preferentially to models consistent in size with natural prey, to models having non-elongate shapes regardless of type of contour (rounded or angular), and to those following paths with vertical, rather than only horizontal, components.  相似文献   
97.
98.

Background

Climate change is increasingly being implicated in species'' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis.

Methods and Findings

The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species'' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species'' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and reservoir species occupancy to only the top 10% of their potential suitable habitat, the expected number of human individuals exposed to leishmaniasis by 2080 will at least double its present value.

Conclusions

These models predict that climate change will exacerbate the ecological risk of human exposure to leishmaniasis in areas outside its present range in the United States and, possibly, in parts of southern Canada. This prediction suggests the adoption of measures such as surveillance for leishmaniasis north of Texas as disease cases spread northwards. Potential vector and reservoir control strategies—besides direct intervention in disease cases—should also be further investigated.  相似文献   
99.

Background

The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol.

Objectives

This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses.

Methods

Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 μg of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 μg of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE.

Results

Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 μg per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses.

Conclusions

The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.  相似文献   
100.
Rats go genomic     
A report on the meeting 'Rat Genomics and Models', Cold Spring Harbor, USA, 8-11 December 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号