首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157383篇
  免费   4836篇
  国内免费   826篇
  163045篇
  2023年   386篇
  2022年   585篇
  2021年   1133篇
  2020年   881篇
  2019年   1095篇
  2018年   13090篇
  2017年   11752篇
  2016年   9348篇
  2015年   3487篇
  2014年   3364篇
  2013年   4312篇
  2012年   8723篇
  2011年   16715篇
  2010年   14436篇
  2009年   10404篇
  2008年   12845篇
  2007年   14289篇
  2006年   3468篇
  2005年   3208篇
  2004年   3641篇
  2003年   3409篇
  2002年   3036篇
  2001年   1985篇
  2000年   1795篇
  1999年   1357篇
  1998年   692篇
  1997年   530篇
  1996年   501篇
  1995年   489篇
  1994年   399篇
  1993年   399篇
  1992年   795篇
  1991年   756篇
  1990年   658篇
  1989年   655篇
  1988年   591篇
  1987年   598篇
  1986年   517篇
  1985年   497篇
  1984年   417篇
  1983年   390篇
  1982年   294篇
  1979年   393篇
  1978年   263篇
  1975年   259篇
  1974年   307篇
  1973年   306篇
  1972年   517篇
  1971年   518篇
  1970年   258篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   
992.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   
993.
994.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
995.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
996.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
997.
Globally, climate is changing rapidly, which causes shifts in many species' distributions, stressing the need to understand their response to changing environmental conditions to inform conservation and management. Northern latitudes are expected to experience strongest changes in climate, with milder winters and decreasing snow cover. The wolverine (Gulo gulo) is a circumpolar, threatened carnivore distributed in northern tundra, boreal, and subboreal habitats. Previous studies have suggested that wolverine distribution and reproduction are constrained by a strong association with persistent spring snow cover. We assess this hypothesis by relating spatial distribution of 1589 reproductive events, a fitness-related proxy for female reproduction and survival, to snow cover over two decades. Wolverine distribution has increased and number of reproductive events increased 20 times in areas lacking spring snow cover during our study period, despite low monitoring effort where snow is sparse. Thus, the relationship between reproductive events and persistent spring snow cover weakened during this period. These findings show that wolverine reproductive success and hence distribution are less dependent on spring snow cover than expected. This has important implications for projections of future habitat availability, and thus distribution, of this threatened species. Our study also illustrates how past persecution, or other factors, that have restricted species distribution to remote areas can mask actual effects of environmental parameters, whose importance reveals when populations expand beyond previously restricted ranges. Overwhelming evidence shows that climate change is affecting many species and ecological processes, but forecasting potential consequences on a given species requires longitudinal data to revisit hypotheses and reassess the direction and magnitude of climate effects with new data. This is especially important for conservation-oriented management of species inhabiting dynamic systems where environmental factors and human activities interact, a common scenario for many species in different ecosystems around the globe.  相似文献   
998.
Honey bees are among the most effective pollinators that promote plant reproduction. Bees are highly active in the pollen collection season, which can lead to the transmission of selected pathogens between colonies. The clade Starmerella comprises yeasts that are isolated mainly from bees and their environment. When visiting plants, bees can come into contact with Starmerella spp. The aim of this study was to determine the prevalence and phylogenetic position of S. apis in bee colonies. Bee colonies were collected from nine apiaries in three regions. Ten colonies were sampled randomly from each apiary, and pooled samples were collected from the central part of the hive in each colony. A total of 90 (100%) bee colonies from nine apiaries were examined. Starmerella apis was detected in 31 (34.44%) samples, but related species were not identified. The 18S rRNA amplicon sequences of S. apis were compatible with the GenBank sequences of Starmerella spp. from India, Japan, Syria, Thailand, and the USA. The amplicon sequences of S. apis were also 99.06% homologous with the sequences deposited in GenBank under accession numbers JX515988 and NG067631 .This is the first study to perform a phylogenetic analysis of S. apis in Polish honey bees.  相似文献   
999.
Hemocytes are circulating blood cells that play a crucial function in amphipods and other crustacean immune systems. The hemocytes of the marine tropical amphipod Parhyale hawaiensis have been used for the evaluation of DNA damage and micronuclei, but they have not been characterized in the scientific literature. The aim of this study was to describe the hemolymph cells of P. hawaiensis and study their phagocytotic activity. Basic dyes were used to differentiate the cell types and the presence of lipids. The total hemocyte counts (THCs) and the proportion and sizes of the hemocyte types were determined. Hemolymph was exposed to Escherichia coli for verification of the presence of phagocytosis. Three cell types, all containing lipids, were identified in P. hawaiensis: granulocytes (oval shape, 13.4 × 7.6 μm), semi-granulocytes (oval shape, 14.1 × 7.2 μm), and hyalinocytes (round shape, 9.6 × 7.2 μm). Those three cell types were found in different percentages in males (64.8%, 31.1%, and 4.2%) and females (70.1%, 28.2%, and 1.7%). THCs for males were 9007 ± 3800 cells per individual and 4695 ± 1892 cells per individual for females. The cells of E. coli were phagocytized by the hemocytes. Our findings increased the knowledge of hemocytes in P. hawaiensis and is a step forward in using hemocyte-based immune responses as an endpoint in ecotoxicology.  相似文献   
1000.
Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses. In the present work, we were focused on characterizing the response induced by HGF and its protective mechanism in the RINm5F pancreatic cell line treated with ethanol and acetaldehyde. RINm5F cells were treated with ethanol or acetaldehyde for 12 h in the presence or not of HGF (50 ng/ml). Cells under HGF treatment decreased the content of reactive oxygen species and lipid peroxidation induced by both toxics, improving cell viability. This effect was correlated to an improvement in insulin expression impaired by ethanol and acetaldehyde. Using a specific inhibitor of Erk1/2 abrogated the effects elicited by the growth factor. In conclusion, the work provides mechanistic evidence of the HGF-induced-protective response to the alcohol-induced damage in the main cellular component of the endocrine pancreas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号