首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   184篇
  国内免费   5篇
  2118篇
  2022年   17篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   21篇
  2017年   20篇
  2016年   29篇
  2015年   62篇
  2014年   71篇
  2013年   90篇
  2012年   97篇
  2011年   120篇
  2010年   66篇
  2009年   49篇
  2008年   77篇
  2007年   103篇
  2006年   91篇
  2005年   96篇
  2004年   72篇
  2003年   76篇
  2002年   66篇
  2001年   56篇
  2000年   52篇
  1999年   57篇
  1998年   27篇
  1997年   14篇
  1996年   22篇
  1995年   22篇
  1994年   20篇
  1993年   28篇
  1992年   32篇
  1991年   27篇
  1990年   34篇
  1989年   27篇
  1988年   19篇
  1987年   30篇
  1986年   25篇
  1985年   27篇
  1984年   32篇
  1983年   15篇
  1982年   26篇
  1981年   21篇
  1980年   22篇
  1979年   22篇
  1978年   12篇
  1977年   16篇
  1976年   13篇
  1975年   13篇
  1974年   18篇
  1972年   11篇
排序方式: 共有2118条查询结果,搜索用时 15 毫秒
141.
Real-time ultrasonography was used to detect early pregnancy in 32 longtailed macaques (Macaca fascicularis). In 92% of the successful conceptions, a correct diagnosis was made. The earliest sign of pregnancy was an intrauterine ringlike structure (11 days). A "line swelling" (14 days) preceded definite fetal echoes (21 days), and fetal heart motion (30 days) proved fetal viability. Ultrasound is a rapid, noninvasive, and relatively cost-effective method of diagnosing and monitoring early pregnancy in M. fascicularis.  相似文献   
142.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   
143.

The ichnogenus Tonganoxichnus, produced by one or more monuran insect taxa, is now recorded from the Middle Pennsylvanian Mansfield Formation of Indiana. Tonganoxichnus is a resting trace that has three important implications. First, it represents a recurrent behavioral pattern in Upper Carboniferous to Lower Permian marginal marine environments of North America. Second, it provides finely resolved anatomical information for axial and appendicular body structures and behaviors that are difficult to determine from body‐fossil material alone. Third, integrated sedimentologic and ichnologic observations indicate that the Tonganoxichnus assemblage, inclusive of other ichnotaxa, is common in tidal rhythmites that were developed under freshwater conditions, probably in the innermost part of estuarine systems, close to or at the fluvioestuarine transition.  相似文献   
144.
Coastal ecosystems that are characterized by kelp forests encounter daily pH fluctuations, driven by photosynthesis and respiration, which are larger than pH changes owing to ocean acidification (OA) projected for surface ocean waters by 2100. We investigated whether mimicry of biologically mediated diurnal shifts in pH—based for the first time on pH time-series measurements within a kelp forest—would offset or amplify the negative effects of OA on calcifiers. In a 40-day laboratory experiment, the calcifying coralline macroalga, Arthrocardia corymbosa, was exposed to two mean pH treatments (8.05 or 7.65). For each mean, two experimental pH manipulations were applied. In one treatment, pH was held constant. In the second treatment, pH was manipulated around the mean (as a step-function), 0.4 pH units higher during daylight and 0.4 units lower during darkness to approximate diurnal fluctuations in a kelp forest. In all cases, growth rates were lower at a reduced mean pH, and fluctuations in pH acted additively to further reduce growth. Photosynthesis, recruitment and elemental composition did not change with pH, but δ13C increased at lower mean pH. Including environmental heterogeneity in experimental design will assist with a more accurate assessment of the responses of calcifiers to OA.  相似文献   
145.
Aquatic macroaggregates (flocs ≥0.5 mm) provide an important mechanism for vertical flux of nutrients and organic matter in aquatic ecosystems, yet their role in the transport and fate of zoonotic pathogens is largely unknown. Terrestrial pathogens that enter coastal waters through contaminated freshwater runoff may be especially prone to flocculation due to fluid dynamics and electrochemical changes that occur where fresh and marine waters mix. In this study, laboratory experiments were conducted to evaluate whether zoonotic pathogens (Cryptosporidium, Giardia, Salmonella) and a virus surrogate (PP7) are associated with aquatic macroaggregates and whether pathogen aggregation is enhanced in saline waters. Targeted microorganisms showed increased association with macroaggregates in estuarine and marine waters, as compared with an ultrapure water control and natural freshwater. Enrichment factor estimations demonstrated that pathogens are 2–4 orders of magnitude more concentrated in aggregates than in the estuarine and marine water surrounding the aggregates. Pathogen incorporation into aquatic macroaggregates may influence their transmission to susceptible hosts through settling and subsequent accumulation in zones where aggregation is greatest, as well as via enhanced uptake by invertebrates that serve as prey for marine animals or as seafood for humans.  相似文献   
146.
Covalent modification is an important strategy for introducing new functions into proteins. As engineered proteins become more sophisticated, it is often desirable to introduce multiple, modifications involving several different functionalities in a site-specific manner. Such orthogonal labeling schemes require independent labeling of differentially reactive nucleophilic amino acid side chains. We have developed two protein-mediated protection schemes that permit independent labeling of multiple thiols. These schemes exploit metal coordination or disulfide bond formation to reversibly protect cysteines in a Cys(2)His(2) zinc finger domain. We constructed a variety of N- and C-terminal fusions of these domains with maltose-binding protein, which were labeled with two or three different fluorophores. Multiple modifications were made by reacting an unprotected cysteine in MBP first, deprotecting the zinc finger, and then reacting the zinc finger cysteines. The fusion proteins were orthogonally labeled with two different fluorophores, which exhibited intramolecular fluorescene resonance energy transfer (FRET). These conjugates showed up to a threefold ratiometric change in emission intensities in response to maltose binding. We also demonstrated that the metal- and redox-mediated protection methods can be combined to produce triple independent modifications, and prepared a protein labeled with three different fluorophores that exhibited a FRET relay. Finally, labeled glucose-binding protein was covalently patterned on glass slides using thiol-mediated immobilization chemistries. Together, these experiments demonstrated that reversible thiol protection schemes provide a rapid, straightforward method for producing multiple, site-specific modifications.  相似文献   
147.
Glutamate toxicity involves increases in intracellular calcium levels and enhanced formation of reactive oxygen species (ROS) causing neuronal dysfunction and death in acute and chronic neurodegenerative disorders. The molecular mechanisms mediating glutamate-induced ROS formation are, however, still poorly defined. Using a model system that lacks glutamate-operated calcium channels, we demonstrate that glutamate-induced acceleration of ROS levels occurs in two steps and is initiated by lipoxygenases (LOXs) and then significantly accelerated through Bid-dependent mitochondrial damage. The Bid-mediated secondary boost of ROS formation downstream of LOX activity further involves mitochondrial fragmentation and release of mitochondrial apoptosis-inducing factor (AIF) to the nucleus. These data imply that the activation of Bid is an essential step in amplifying glutamate-induced formation of lipid peroxides to irreversible mitochondrial damage associated with further enhanced free radical formation and AIF-dependent execution of cell death.  相似文献   
148.

Background

Infectious diseases have contributed to the decline and local extinction of several wildlife species, including African wild dogs (Lycaon pictus). Mitigating such disease threats is challenging, partly because uncertainty about disease dynamics makes it difficult to identify the best management approaches. Serious impacts on susceptible populations most frequently occur when generalist pathogens are maintained within populations of abundant (often domestic) “reservoir” hosts, and spill over into less abundant host species. If this is the case, disease control directed at the reservoir host might be most appropriate. However, pathogen transmission within threatened host populations may also be important, and may not be controllable by managing another host species.

Methodology/Principal Findings

We investigated interspecific and intraspecific transmission routes, by comparing African wild dogs'' exposure to six canine pathogens with behavioural measures of their opportunities for contact with domestic dogs and with other wild dogs. Domestic dog contact was associated with exposure to canine parvovirus, Ehrlichia canis, Neospora caninum and perhaps rabies virus, but not with exposure to canine distemper virus or canine coronavirus. Contact with other wild dogs appeared not to increase the risk of exposure to any of the pathogens.

Conclusions/Significance

These findings, combined with other data, suggest that management directed at domestic dogs might help to protect wild dog populations from rabies virus, but not from canine distemper virus. However, further analyses are needed to determine the management approaches – including no intervention – which are most appropriate for each pathogen.  相似文献   
149.
When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.  相似文献   
150.
The input of terrestrial silt and clay (hereafter mud) into coastal environments can alter sediment grain size distribution affecting the structure and functioning of benthic communities. The relationship between sediment mud content and macrofaunal community structure has been well documented, but not the effects on ecosystem function. In 143 plots from the mid-intertidal sites in 9 estuaries, we measured sediment properties, macrofaunal community composition and fluxes of O2 and NH4 + across the sediment–water interface to derive process-based measures of ecosystem function across the sand–mud gradient. We observed reductions in measures of macrofaunal diversity and decreases in the maximum density of key bioturbating bivalves (Austrovenus stutchburyi and Macomona liliana) with increased mud content. Concurrently, the maximum rates of sediment oxygen consumption (SOC), NH4 + efflux (NH4 +) and biomass standardized gross primary production (GPPChl-a ) also decreased with increasing mud content. Environmental predictors explained 34–39% (P = 0.005–0.01) of the total variation in ecosystem function in distance-based linear models. After partitioning out the effect of mud, A. stutchburyi abundance was positively correlated and explained 25 and 23% (P = 0.0001) of the variation of SOC and NH4 +, respectively. Also, mud content (negatively correlated) and temperature (positively correlated) explained 26% of variability in GPPChl-a (P = 0.0001). Our results highlight the importance of increased mud content and the associated reduction in the abundance of strongly interacting key species on the loss of ecosystem function in intertidal sand flats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号