首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   102篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   9篇
  2017年   14篇
  2016年   16篇
  2015年   34篇
  2014年   38篇
  2013年   41篇
  2012年   44篇
  2011年   47篇
  2010年   32篇
  2009年   34篇
  2008年   50篇
  2007年   47篇
  2006年   38篇
  2005年   49篇
  2004年   49篇
  2003年   32篇
  2002年   33篇
  2001年   31篇
  2000年   38篇
  1999年   25篇
  1998年   11篇
  1997年   16篇
  1996年   17篇
  1995年   9篇
  1994年   13篇
  1993年   7篇
  1992年   17篇
  1991年   12篇
  1990年   21篇
  1989年   26篇
  1988年   15篇
  1987年   18篇
  1986年   20篇
  1985年   25篇
  1984年   16篇
  1983年   11篇
  1982年   8篇
  1981年   9篇
  1980年   8篇
  1979年   7篇
  1978年   10篇
  1977年   9篇
  1975年   8篇
  1973年   8篇
  1971年   8篇
  1967年   5篇
  1960年   8篇
排序方式: 共有1118条查询结果,搜索用时 843 毫秒
61.
Junction adhesion molecule is a receptor for reovirus   总被引:32,自引:0,他引:32  
Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.  相似文献   
62.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   
63.
Life-history characteristics of the double-ended pipefish, Syngnathoides biaculeatus (Bloch), were investigated to determine growth rate, degree of sexual dimorphism, size at maturity, and reproductive biology. Growth rates of wild juveniles and adults calculated from monthly progression of length-frequency modes ranged from 0.8mmd–1 (fish lengths 120–145mm standard length (SL)) in summer to 0.2mmd–1 in winter (185–200mm SL). Growth of laboratory-reared juveniles up to 63d old was greater, ranging from 0.8 to 2.3mmd-1. The von Bertalanffy growth constant K was estimated at 0.0076d- 1, or 2.8year–1. Morphological differentiation between the sexes based upon abdominal pattern was possible for fish larger than 120mm SL, with females possessing a zigzag pattern on the abdomen. The association between this pattern and sex was confirmed by histological gonad analysis. Males were significantly longer than females during four of seven seasons examined, and a 1:1 sex ratio was determined for all seasons except autumn when the ratio was female biased. The breeding season was marked by the appearance of pregnant males between October and April, and during courtship both species exhibited increased pigmentation. The minimum paternal size at maturity was 185mm, the maximum length recorded 260mm. Clutch size ranged between 60 and 200 eggs, with a mean of 153. Ovaries had a sequential pattern of egg development, resulting in egg batches that approximated the number of eggs carried by brooding males. Additionally, all eggs in a brood were at the same developmental stage. This suggests that one female provides all of the eggs for one male per breeding event in a monogamous mating system.  相似文献   
64.
Xanthones from the bark of Garcinia merguensis   总被引:1,自引:0,他引:1  
The bark of Garcinia merguensis yielded 10 xanthones, merguenone, 1,5-dihydroxy-6'-methyl-6'-(4-methyl-3-pentenyl)-pyrano(2',3':3,2)-xanthone, subelliptenone H, 8-deoxygartanin, rheediaxanthone A, morusignin G, 6-deoxyjacareubin, 1,3,5-trihydroxy-4,8-di(3-methylbut-2-enyl)-xanthone, rheediachromenoxanthone and 6-deoxyisojacareubin. The structure of merguenone was determined using spectroscopic techniques, mainly 1D and 2D NMR spectroscopy.  相似文献   
65.
Tumor necrosis factor (TNF) has been implicated in the development and pathogenicity of infectious diseases and autoimmune disorders, such as septic shock and arthritis. The zinc-finger protein tristetraprolin (TTP) has been identified as a major regulator of TNF biosynthesis. To define its intracellular location and examine its regulation of TNF, a quantitive intracellular staining assay specific for TTP was developed. We establish for the first time that in peripheral blood leukocytes, expression of endogenous TTP is confined to the cytoplasm. Baseline expression of TTP was higher in monocytes than in lymphocytes or neutrophils. After in vitro incubation with lipopolysaccharide (LPS), leukocyte TTP levels increased rapidly, peaking after approximately 2 hours. Monocytes showed the greatest response to LPS stimulation and lymphocytes the least. TTP levels were also studied in leukocytes isolated from healthy volunteers infused with a bolus dose of LPS. TTP expression and initial upregulation in response to LPS infusion were consistent with the in vitro data. Neutrophil TTP levels responded first, reaching an initial peak within 1 hour, monocyte levels peaked next at 2 hours, followed by lymphocytes at 4 hours. This response paralleled plasma TNF levels, which peaked 2 hours after infusion and were no longer detectable after 12 hours. A second rise in intracellular TTP levels, which did not parallel plasma TNF levels, was observed in all leukocyte populations, starting 12 hours after infusion. These data establish the cytoplasmic location of TTP, supporting a major role for this protein in regulating TNF production, and suggest that TTP levels are not regulated solely by TNF.  相似文献   
66.
Mutations in mitochondrial DNA (mtDNA) cause a spectrum of human pathologies, which predominantly affect skeletal muscle and the central nervous system. In patients, mutated and wild-type mtDNAs often co-exist in the same cell (mtDNA heteroplasmy). In the absence of pharmacological therapy, a genetic strategy for treatment has been proposed whereby replication of mutated mtDNA is inhibited by selective hybridisation of a nucleic acid derivative to the single-stranded replication intermediate, allowing propagation of the wild-type genome and correction of the associated respiratory chain defect. Previous studies have shown the efficacy of this anti-genomic approach in vitro, targeting pathogenic mtDNA templates with only a single point mutation. Pathogenic molecules harbouring deletions, however, present a more difficult problem. Deletions often occur at the site of two short repeat sequences (4–13 residues), only one of which is retained in the deleted molecule. With the more common larger repeats it is therefore difficult to design an anti-genomic molecule that will bind selectively across the breakpoint of the deleted mtDNA. To address this problem, we have used linker-substituted oligodeoxynucleotides to bridge the repeated residues. We show that molecules can be designed to bind more tightly to the deleted as compared to the wild-type mtDNA template, consistent with the nucleotide sequence on either side of the linker co-operating to increase binding affinity. Furthermore, these bridging molecules are capable of sequence-dependent partial inhibition of replication in vitro.  相似文献   
67.
The endoplasmic reticulum protein tapasin is considered to be a class I-dedicated chaperone because it facilitates peptide loading by proposed mechanisms such as peptide editing, endoplasmic reticulum retention of nonpeptide-bound molecules, and/or localizing class I near the peptide source. Nonetheless, the primary functions of tapasin remain controversial as do the relative dependencies of different class I molecules on tapasin for optimal peptide loading and surface expression. Tapasin dependencies have been addressed in previous studies by transfecting different class I alleles into tapasin-deficient LCL721.220 cells and then monitoring surface expression and Ag presentation to T cells. Indeed, by these criteria, class I alleles have disparate tapasin-dependencies. In this study, we report a novel and more direct method of comparing tapasin dependency by monitoring the ratio of folded vs open forms of the different mouse class I heavy chains, L(d), K(d), and K(b). Furthermore, we determine the amount of de novo heavy chain synthesis required to attain comparable expression in the presence vs absence of tapasin. Our findings show that tapasin dramatically improves peptide loading of all three of these mouse molecules.  相似文献   
68.
SC-71952, a substituted analog of dithiobisnicotinic acid dimethyl ester, was identified as a potent inhibitor of cholesteryl ester transfer protein (CETP). When tested in an in vitro assay, the concentration of SC-71952 required for half-maximal inhibition was 1 microm. The potency of SC-71952 was enhanced 200-fold by preincubation of the inhibitor with CETP, and was decreased 50-fold by treatment with dithiothreitol. Analogs of SC-71952 that did not contain a disulfide linkage were less potent, did not display time dependency, and were not affected by dithiothreitol treatment. Kinetic and biochemical characterization of the inhibitory process of CETP by SC-71952 suggested that the inhibitor initially binds rapidly and reversibly to a hydrophobic site on CETP. With time, the bound inhibitor irreversibly inactivates CETP, presumably by reacting with one of the free cysteines of CETP. Liquid chromatography/mass spectroscopy (LC/MS) analyses of tryptic digests of untreated or SC-71952-inactivated CETP was used to identify which cysteine(s) were potentially involved in the time-dependent, irreversible component of inactivation by the inhibitor. One disulfide bond, Cys143-Cys184, was unaffected by treatment with the inhibitor. Inactivation of CETP by SC-71952 correlated with a progressive decrease in the abundance of free Cys-13 and Cys-333. Conversion of Cys-13 to alanine had no effect on the rapid reversible component of inactivation by SC-71952. However, it abolished the time-dependent enhancement in potency seen with the inhibitor when using wild-type CETP. These data indicate that Cys-13 is critical for the irreversible inactivation of CETP by SC-71952 and provides support for the structural model that places Cys-13 near the neutral lipid-binding site of CETP.  相似文献   
69.
Morality responses were determined for 5th-instar lightbrown apple moth, Epiphyas postvittana (Walker), in the presence and absence of apples to immersion in ethanol solutions and exposure to ethanol vapor at a range of concentrations, treatment times, and temperatures. Ethanol may have caused an initial knock-down effect in E. postvittana larvae because there was a trend for larval mortality to reduce with increased periods between treatment and assessment time when immersed at 20 degrees C in 30 or 50% ethanol solutions. Mortality for larvae immersed on apples in a range of ethanol concentrations was higher than for larvae in the absence of apples. Increasing treatment temperature from 20 to 45 degrees C during ethanol immersion significantly increased larval mortality. During ethanol vapor exposure, longer treatment times were required to achieve 99% E. postvittana mortality for larvae on apples compared with those in the absence of apples.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号