首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   68篇
  542篇
  2021年   9篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   22篇
  2015年   17篇
  2014年   18篇
  2013年   11篇
  2012年   20篇
  2011年   24篇
  2010年   12篇
  2009年   8篇
  2008年   15篇
  2007年   25篇
  2006年   17篇
  2005年   17篇
  2004年   17篇
  2003年   19篇
  2002年   13篇
  2001年   17篇
  2000年   19篇
  1999年   10篇
  1998年   23篇
  1997年   12篇
  1996年   14篇
  1995年   15篇
  1994年   4篇
  1993年   10篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   9篇
  1988年   4篇
  1986年   6篇
  1985年   11篇
  1984年   6篇
  1981年   7篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   5篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
71.
We report on a protein kinase function encoded by the unique N terminus of the herpes simplex virus type 1 (HSV-1) ribonucleotide reductase large subunit (R1). R1 expressed in Escherichia coli exhibited autophosphorylation activity in a reaction which depended on the presence of the unique N terminus. When the N terminus was separately expressed in E. coli and partially purified, a similar autophosphorylation reaction was observed. Importantly, transphosphorylation of histones and of proteins in HSV-1-infected cell extracts was also observed with purified R1 and with truncated R1 mutants in which most of the N terminus was deleted. Ion-exchange chromatography was used to separate the autophosphorylating activity of the N terminus from the transphosphorylating activity of an E. coli contaminant protein kinase. We propose a putative function for this activity of the HSV-1 R1 N terminus during the immediate-early phase of virus replication.  相似文献   
72.
73.
Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.

Mutations in Bk2L3 result in dwarfed plants with decreased anisotropic cell growth, cellulose deposition, phloem pressure, sucrose export, and carbohydrate hyperaccumulation in mature maize leaves.  相似文献   
74.

Premise

Phenological variation among individuals within populations is common and has a variety of ecological and evolutionary consequences, including forming the basis for population-level responses to environmental change. Although the timing of life-cycle events has genetic underpinnings, whether intraspecific variation in the duration of life-cycle events reflects genetic differences among individuals is poorly understood.

Methods

We used a common garden experiment with 10 genotypes of Salix hookeriana (coastal willow) from northern California, United States to investigate the extent to which genetic variation explains intraspecific variation in the timing and duration of multiple, sequential life-cycle events: flowering, leaf budbreak, leaf expansion, fruiting, and fall leaf coloration. We used seven clones of each genotype, for a total of 70 individual trees.

Results

Genotype affected each sequential life-cycle event independently and explained on average 62% of the variation in the timing and duration of vegetative and reproductive life-cycle events. All events were significantly heritable. A single genotype tended to be “early” or “late” across life-cycle events, but for event durations, there was no consistent response within genotypes.

Conclusions

This research demonstrates that genetic variation can be a major component underlying intraspecific variation in the timing and duration of life-cycle events. It is often assumed that the environment affects durations, but we show that genetic factors also play a role. Because the timing and duration of events are independent of one another, our results suggest that the effects of environmental change on one event will not necessarily cascade to subsequent events.  相似文献   
75.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
76.
AMP-activated protein kinase (AMPK) serves as an energy-sensing protein kinase that is activated by a variety of metabolic stresses that lower cellular energy levels. When activated, AMPK modulates a network of metabolic pathways that result in net increased substrate oxidation, generation of reduced nucleotide cofactors, and production of ATP. AMPK is activated by a high AMP:ATP ratio and phosphorylation on threonine 172 by an upstream kinase. Recent studies suggest that mechanisms that do not involve changes in adenine nucleotide levels can activate AMPK. Another sensor of the metabolic state of the cell is the NAD/NADH redox potential. To test whether the redox state might have an effect on AMPK activity, we examined the effect of beta-NAD and NADH on this enzyme. The recombinant T172D-AMPK, which was mutated to mimic the phosphorylated state, was activated by beta-NAD in a dose-dependent manner, whereas NADH inhibited its activity. We explored the effect of NADH on AMPK by systematically varying the concentrations of ATP, NADH, peptide substrate, and AMP. Based on our findings and established activation of AMPK by AMP, we proposed a model for the regulation by NADH. Key features of this model are as follows. (a) NADH has an apparent competitive behavior with respect to ATP and uncompetitive behavior with respect to AMP resulting in improved binding constant in the presence of AMP, and (b) the binding of the peptide is not significantly altered by NADH. In the absence of AMP, the binding constant of NADH becomes higher than physiologically relevant. We conclude that AMPK senses both components of cellular energy status, redox potential, and phosphorylation potential.  相似文献   
77.
We have screened a subtracted cDNA library in order to identify differentially expressed genes in omental adipose tissue of human patients with Type 2 diabetes. One clone (#1738) showed a marked reduction in omental adipose tissue from patients with Type 2 diabetes. Sequencing and BLAST analysis revealed clone #1738 was the adipocyte-specific secreted protein gene apM1 (synonyms ACRP30, AdipoQ, GBP28). Consistent with the murine orthologue, apM1 mRNA was expressed in cultured human adipocytes and not in preadipocytes. Using RT-PCR we confirmed that apM1 mRNA levels were significantly reduced in omental adipose tissue of obese patients with Type 2 diabetes compared with lean and obese normoglycemic subjects. Although less pronounced, apM1 mRNA levels were reduced in subcutaneous adipose tissue of Type 2 diabetic patients. Whereas the biological function of apM1 is presently unknown, the tissue specific expression, structural similarities to TNFα and the dysregulated expression observed in obese Type 2 diabetic patients suggest that this factor may play a role in the pathogenesis of insulin resistance and Type 2 diabetes.  相似文献   
78.
The evolutionary mechanisms underlying the maintenance of invariant traits are poorly understood, partly because the lack of variance makes these mechanisms difficult to study. Although the number of cotyledons that plant species produce is highly canalized, populations of plants frequently contain individuals with abnormal cotyledon numbers. In a garden study with 1857 wild radish plants from 75 paternal half-sibling families, 89 (almost 5%) had cotyledon numbers less or greater than two. We found evidence for direct selection on cotyledon number, but no evidence for additive genetic variation for cotyledon number. In spite of the very large sample size, our power to detect variation and selection was hampered by the small number of individuals (10) producing more than two cotyledons. Thus, our results provide support for both a lack of genetic variation and selection as reasons for the current lack of variation in wild radish cotyledon number.  相似文献   
79.
80.
Sister-chromatid exchange (SCE) induction by the direct-acting bifunctional carcinogen, diepoxybutane (DEB), was investigated in multiple tissues in vivo. The log-log dose SCE response relationship was found to be parallel to that previously reported for DEB induction of lung adenomas. However, the SCE assay is approximately 20 times as sensitive in detecting genotoxic effects of DEB than indicated by the lung adenoma assay. Examination of second and third division cells following various treatment protocols revealed that regardless of the nature of initially induced lesions, they are rapidly repaired with no evidence of persistence beyond 1 cell cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号