首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   67篇
  2021年   8篇
  2018年   4篇
  2017年   7篇
  2016年   19篇
  2015年   14篇
  2014年   15篇
  2013年   14篇
  2012年   24篇
  2011年   23篇
  2010年   14篇
  2009年   9篇
  2008年   17篇
  2007年   24篇
  2006年   23篇
  2005年   18篇
  2004年   15篇
  2003年   18篇
  2002年   14篇
  2001年   18篇
  2000年   16篇
  1999年   13篇
  1998年   19篇
  1997年   12篇
  1996年   16篇
  1995年   13篇
  1993年   10篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   7篇
  1985年   11篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
  1971年   5篇
  1969年   3篇
  1967年   3篇
  1966年   3篇
排序方式: 共有541条查询结果,搜索用时 31 毫秒
141.
142.
The main limitation of both the rabbit and mouse models of rotavirus infection is that human rotavirus (HRV) strains do not replicate efficiently in either animal. The identification of individual genes necessary for conferring replication competence in a heterologous host is important to an understanding of the host range restriction of rotavirus infections. We recently reported the identification of the P type of the spike protein VP4 of four lapine rotavirus strains as being P[14]. To determine whether VP4 is involved in host range restriction in rabbits, we evaluated infection in rotavirus antibody-free rabbits inoculated orally with two P[14] HRVs, PA169 (G6) and HAL1166 (G8), and with several other HRV strains and animal rotavirus strains of different P and G types. We also evaluated whether the parental rhesus rotavirus (RRV) (P5B[3], G3) and the derived RRV-HRV reassortant candidate vaccine strains RRV × D (G1), RRV × DS-1 (G2), and RRV × ST3 (G4) would productively infect rabbits. Based on virus shedding, limited replication was observed with the P[14] HRV strains and with the SA11 Cl3 (P[2], G3) and SA11 4F (P6[1], G3) animal rotavirus strains, compared to the homologous ALA strain (P[14], G3). However, even limited infection provided complete protection from rotavirus infection when rabbits were challenged orally 28 days postinoculation (DPI) with 103 50% infective doses of ALA rabbit rotavirus. Other HRVs did not productively infect rabbits and provided no significant protection from challenge, in spite of occasional seroconversion. Simian RRV replicated as efficiently as lapine ALA rotavirus in rabbits and provided complete protection from ALA challenge. Live attenuated RRV reassortant vaccine strains resulted in no, limited, or productive infection of rabbits, but all rabbits were completely protected from heterotypic ALA challenge. The altered replication efficiency of the reassortants in rabbits suggests a role for VP7 in host range restriction. Also, our results suggest that VP4 may be involved in, but is not exclusively responsible for, host range restriction in the rabbit model. The replication efficiency of rotavirus in rabbits also is not controlled by the product of gene 5 (NSP1) alone, since a reassortant rotavirus with ALA gene 5 and all other genes from SA11 was more severely replication restricted than either parental rotavirus strain.Rotaviruses are the leading cause of acute viral gastroenteritis in humans and animals throughout the world. Rotaviruses belong to the Reoviridae family and are characterized by a genome consisting of 11 segments of double-stranded RNA (dsRNA), enclosed in a triple-layered protein capsid (28). Serotype designations are based on independent neutralization determinants on the two outer capsid proteins VP4 (P serotypes, for protease-sensitive protein) and VP7 (G serotypes, for glycoprotein) (28). Serotype specificity determined by cross-neutralization assays using hyperimmune sera against the whole virus is mainly defined by VP7, and 14 G serotypes have been identified (28). Recently, antisera or monoclonal antibodies raised to VP4 and sequence analysis of VP4 identified 12 P serotypes and 20 P genotypes, respectively (28, 39). Rotavirus VP4 protein is responsible for a number of important biological functions, such as the enhancement of infectivity by proteolytic cleavage of VP4 into VP8* and VP5*, hemagglutination, restricted growth in cell culture, virulence, initial virus attachment to cells, and protease sensitivity associated with plaque formation (1, 4, 25, 34, 40, 51).The use of animal models, including the rabbit and mouse models, has been essential to the understanding of rotavirus infection, pathology, disease, immunity, and testing of prospective vaccines in children (21). The limitations of the rabbit and adult mouse models of rotavirus infection for vaccine testing are as follows: (i) human rotavirus (HRV) strains do not efficiently replicate in either animal, (ii) clinical disease is not observed, and (iii) only homologous virus strains (isolated from the same species) replicate efficiently and spread horizontally to uninoculated control animals, whereas heterologous virus strains (isolated from a different species) do not (6, 15, 16, 29, 31, 35, 37, 44, 50, 55). We and others developed a rabbit model of rotavirus infection that is useful for defining basic parameters of active immunity, immunogenicity, and protective efficacy of vaccines (12, 1521, 36, 61). Rabbits are productively infected with homologous lapine rotavirus strains up to at least the age of 5 years, which allows examination of active and long-term immunity for vaccine studies (13, 1517, 36, 61). Group A lapine rotavirus strains have been isolated in Canada, Japan, Italy, and the United States, and those that have been characterized are serotype G3 (8, 11, 15, 53, 56, 61). Recently, the P type of four different strains was identified as genotype P[14] (11). Previously, limited infection of rabbits with a heterologous strain had been obtained only with SA11 Cl3 (P[2], G3) (15).Attempts to identify host range and virulence determinants for rotavirus have implicated different constellations of genes, including genes 2, 3, 4, 5, 8, 9, 10, and 11 (5, 23, 30, 33, 37, 38, 41, 43, 44, 60, 62, 65). Although host range restriction and virulence may be multigenic, two genes, 4 and 5, are of interest because they cluster according to species of origin, suggesting a role in host range restriction. The finding that genome segment 5 (NSP1) sequences cluster according to species of origin (24, 39, 65) and that, in the mouse model, gene 5 segregates with transmission of virus among littermates (5), led to the hypothesis that NSP1 is involved in host range restriction. VP4 sequence analyses of rotavirus strains isolated from different species revealed that specific VP4 types also generally correlate with the species of origin of each rotavirus strain (43, 60). Therefore, once we identified the P type of four lapine rotaviruses as P[14], we tested two P[14] HRV strains, PA169 (G6) and HAL1166 (G8) (32) to determine if VP4 is involved in host range restriction. We also tested several other HRV strains, live attenuated reassortant candidate vaccine strains [rhesus rotavirus (RRV) × D (G1), RRV × DS-1 (G2), and RRV × ST3 (G4)], and animal rotavirus strains of different P and G types to determine if they could productively infect rabbits. In addition, to evaluate whether the single rotavirus gene 5 is responsible for replication efficiency in rabbits, rabbits were inoculated with a reassortant rotavirus with the lapine ALA gene 5 and all the other genes from the simian rotavirus SA11 Cl3 strain.  相似文献   
143.
In vivo expression technology (IVET) has resulted in the isolation of more than 100 Salmonella typhimurium genes that are induced during infection. Many of these in vivo induced (ivi) genes, as well as other virulence genes, are clustered in regions of the chromosome that are specific for Salmonella and are not present in Escherichia coli (e.g., pathogenicity islands). It would be desirable to be able to delete such putative virulence regions of the chromosome, and if the deletion removes genes that play a role in pathogenesis subsequent efforts can then be focused on individual genes that reside within that region. We therefore have developed a strategy for constructing chromosomal deletions which are not limited in size, have defined endpoints with a selectable marker at the joint point, and are not dependent on prior knowledge of sequences contained within the deleted region. Such deletion strategies can be applied to almost any bacterium with homologous recombination and to plasmid-based mutational systems where homologous recombination is not desired or feasible. Received: 6 October 1997 / Accepted: 30 December 1997  相似文献   
144.
Random amplified polymorphic DNAs (RAPDs) were used in combination with a double pseudo-testcross mapping strategy to estimate the position and effects of quantitative trait loci (QTLs) for traits influencing juvenile tree growth and development in two apple cultivars. The mapping population consisted of 172 F1 trees from a cross between the columnar mutant ‘Wijcik McIntosh’ and a standard form disease-resistant selection NY 75441-58. Significant associations were found between markers and height increment, internode number, internode length, base diameter increment, base diameter after 9 years of growth, branch number, and leaf break. The number of genomic regions associated with each trait varied from one to eight. The amount of variation explained by linear regression on individual marker loci (R2) ranged from 3.9 to 24.3%, with an average of 7%. Multiple regression using markers for each putative QTL explained from 6.6 to 41.6% of the phenotypic variation, with an average value of 24.3%. A large number of traits had significant variation associated with the map position of the dominant columnar gene, Co. QTL stability over years was estimated by comparing the locations of putative QTLs for traits measured in multiple years. The majority of genomic regions were associated with a trait in only a single year, although regions associated with a trait in more than 1 year were also detected. The limitations of dominant markers and an outbred mapping pedigree for QTL analysis are discussed. Received: 27 August 1997 / Accepted: 10 February 1998  相似文献   
145.
The protein Tarin 1, from Colocasia esculenta, was expressed in Nicotiana tabacum. Bioassays were done on plants expressing Tarin 1 at different levels using Spodoptera frugiperda larvae, various bacteria and fungi and the root‐knot nematode Meloidogyne javanica. It was found that S. frugiperda larvae fed on transformed plants had retarded and lower pupation, lower accumulated biomass and higher mortality rate than larvae fed on control plants. Also, Tarin 1 was found to inhibit the growth in vitro of Pseudomonas syringae pv. tomato. For Meloidogyne javanica, both relative replication and root damage were greater in control plants than in transformed plants, but the results were not statistically significant. This work illustrates the effects of plants expressing Tarin 1, on the growth and development of insects and bacteria, and shows its potential for pest management.  相似文献   
146.
The self-incompatibility response involves S allele-specific recognition between stigmatic S proteins and incompatible pollen. This response results in pollen inhibition. Defining the amino acid residues within the stigmatic S proteins that participate in S allele-specific inhibition of incompatible pollen is essential for the elucidation of the molecular basis of the self-incompatibility response. We have constructed mutant derivatives of the S1 protein from Papaver rhoeas by using site-directed mutagenesis and have tested their biological activity. This has enabled us to identify amino acid residues in the stigmatic S proteins of P. rhoeas that are required for S-specific inhibition of incompatible pollen. We report here the identification of several amino acid residues in the predicted hydrophilic loop 6 of the P. rhoeas stigmatic S1 protein that are involved in the inhibition of S1 pollen. Mutation of the only hypervariable amino acid, which is situated in this loop, resulted in the complete loss of ability of the S protein to inhibit S1 pollen. This clearly demonstrates that this residue plays a crucial role in pollen recognition and may also participate in defining allelic specificity. We have also established the importance of highly conserved amino acids adjacent to this hypervariable site. Our studies demonstrate that both variable and conserved amino acids in the region of the S protein corresponding to surface loop 6 are key elements that play a role in the recognition and inhibition of incompatible pollen in the pollen-pistil self-incompatibility reaction.  相似文献   
147.
Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine.  相似文献   
148.
Pseudoachondroplasia (PSACH) is an autosomal dominant dwarfing condition associated with disproportionate short stature, marked joint deformities, and early onset osteoarthritis. Previous linkage studies have excluded linkage to cartilage and noncartilagenous extracellular matrix candidate genes. Here, we report mapping the pseudoachondroplasia gene to chromosome 19. Maximum lod scores of 4.70, 4.15, and 4.86 at θ - 0.00 were found for D19S212, D19S215, and D19S49, respectively. Multipoint analysis suggests the following order: D19S253-D19S199-(D19S212/PSACH/Dl9S215)-D19S222-D19S49.  相似文献   
149.
J Xu  R L Conner 《Génome》1994,37(2):305-310
A high amount of intravarietal variation in satellites and C-banded chromosomes was observed in the hexaploid wheatgrass synthetic cultivar 'Greenleaf' (Agropyron intermedium ssp. trichophorum (Link) A. &Gr., 2n = 6x = 42, genome E1E1E2E2SS). The cultivar is an open-pollinated perennial that shows extensive interplant polymorphism for many biological characters. Maximum number of satellites detected varied among plants from zero to six. In 61% of the plants, we observed two large satellites in association with zero, one, or two small ones. Chromosome constitution differed significantly among plants as revealed by analysis of variance based on the total number of banded chromosomes and the number of banded chromosomes with telomeric bands at either one or both ends. Heteromorphism in C-banding patterns between homologues was found in most of the chromosomes and was classified into four types: (i) difference in band size, (ii) difference in presence/absence of one or two bands, (iii) completely different banding patterns, and (iv) banded versus unbanded. Homologous chromosomes having types iii and iv heteromorphism could only be matched by their relative length and arm ratio instead of C-banding patterns. Deletions were detected in two chromosomes. Overall, C-banded chromosomes of this cultivar were characterized by the presence of large telomeric bands and were quite different from the previously reported karyotypes of the supposed diploid ancestor Agropyron elongatum (Host) P. Beauv. (genome EE) and an Ag. intermedium (Host) P. Beauv. accession (E1E1E2E2SS) The results suggest that dramatic chromosome modifications have occurred in this species during the course of evolution. The study sheds light on the extent of intrapopulation polymorphism present in the karyotypes of outcrossing polyploids and synthetic cultivars and has implications regarding strategies for chromosomal manipulation involving open-pollinated species.  相似文献   
150.
The effects of progesterone, 20α-hydroxy-pregn-4-en-3-one, (20α-OH-P) 17 α hydroxyprogesterone (17α-OH-P) and 5α-pregnan-3, 20-dione (5α-P) on endometrium of ovariectomized rabbits have been examined. Progesterone, at 5 mg/kg/day and at 1.7 mg/kg/day increased the number of mitotic figures observed in luminal and glandular epithelium after 5 days of treatment and induced considerable arborization. None of the other compounds induced significant arborization and only 10 mg/kg/day of 20α-OH-P increased the mitotic index in luminal and glandular epithelium. Administrations of 20α-OH-P, 17α-OH-P or 5α-P resulted in the appearance of very large, pale cells in the luminal epithelium which were not present in progesterone treated rabbits. Cytochemical techniques revealed no specific staining in these cells for polysaccharides (PAS, Alcian blue), lipid (Oil Red O) or for blastokinin, a progesterone-inducible, uterine protein, examined by the fluoroscein isothiocyanate labeled antibody technique. The possibility of an apparent dissociation between histodifferentiation and cytodifferentiation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号