全文获取类型
收费全文 | 320篇 |
免费 | 64篇 |
专业分类
384篇 |
出版年
2022年 | 2篇 |
2021年 | 7篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 14篇 |
2014年 | 12篇 |
2013年 | 7篇 |
2012年 | 23篇 |
2011年 | 16篇 |
2010年 | 11篇 |
2009年 | 14篇 |
2008年 | 21篇 |
2007年 | 14篇 |
2006年 | 9篇 |
2005年 | 12篇 |
2004年 | 15篇 |
2003年 | 9篇 |
2002年 | 8篇 |
2001年 | 14篇 |
2000年 | 7篇 |
1999年 | 7篇 |
1998年 | 6篇 |
1997年 | 8篇 |
1996年 | 4篇 |
1995年 | 10篇 |
1994年 | 9篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 9篇 |
1990年 | 4篇 |
1989年 | 8篇 |
1988年 | 12篇 |
1987年 | 12篇 |
1986年 | 5篇 |
1985年 | 9篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1979年 | 6篇 |
1978年 | 4篇 |
1977年 | 4篇 |
1975年 | 3篇 |
1973年 | 3篇 |
1971年 | 2篇 |
1951年 | 1篇 |
排序方式: 共有384条查询结果,搜索用时 31 毫秒
71.
72.
73.
Novel peptide inhibitors of angiotensin-converting enzyme 2 总被引:23,自引:0,他引:23
Huang L Sexton DJ Skogerson K Devlin M Smith R Sanyal I Parry T Kent R Enright J Wu QL Conley G DeOliveira D Morganelli L Ducar M Wescott CR Ladner RC 《The Journal of biological chemistry》2003,278(18):15532-15540
Angiotensin-converting enzyme 2 (ACE2), a recently identified human homolog of ACE, is a novel metallocarboxypeptidase with specificity, tissue distribution, and function distinct from those of ACE. ACE2 may play a unique role in the renin-angiotensin system and mediate cardiovascular and renal function. Here we report the discovery of ACE2 peptide inhibitors through selection of constrained peptide libraries displayed on phage. Six constrained peptide libraries were constructed and selected against FLAG-tagged ACE2 target. ACE2 peptide binders were identified and classified into five groups, based on their effects on ACE2 activity. Peptides from the first three classes exhibited none, weak, or moderate inhibition on ACE2. Peptides from the fourth class exhibited strong inhibition, with equilibrium inhibition constants (K(i) values) from 0.38 to 1.7 microm. Peptides from the fifth class exhibited very strong inhibition, with K(i) values < 0.14 microm. The most potent inhibitor, DX600, had a K(i) of 2.8 nm. Steady-state enzyme kinetic analysis showed that these potent ACE2 inhibitors exhibited a mixed competitive and non-competitive type of inhibition. They were not hydrolyzed by ACE2. Furthermore, they did not inhibit ACE activity, and thus were specific to ACE2. Finally, they also inhibited ACE2 activity toward its natural substrate angiotensin I, suggesting that they would be functional in vivo. As novel ACE2-specific peptide inhibitors, they should be useful in elucidation of ACE2 in vivo function, thus contributing to our better understanding of the biology of cardiovascular regulation. Our results also demonstrate that library selection by phage display technology can be a rapid and efficient way to discover potent and specific protease inhibitors. 相似文献
74.
Hoppeler H.; Howald H.; Conley K.; Lindstedt S. L.; Claassen H.; Vock P.; Weibel E. R. 《Journal of applied physiology》1985,59(2):320-327
The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max). 相似文献
75.
Three experiments were conducted with 105 superovulating Holstein dairy cows in attempts to improve the fertilization rate. Cows were superovulated with follicle-stimulating hormone (FSH) and time of estrus was regulated with prostaglandin F(2)alpha (PGF(2)alpha). Semen was deposited on each infundibulum through a laparoscope inserted through the flank (Experiment 1) or near the uterotubal junctions through flexible tubing passed through the cervix and uterine horns (Experiment 2). In the third experiment, high numbers of sperm in fresh semen were deposited in the uterus. Cows were necropsied and ova were recovered and examined about 3.5 d after the beginning of estrus. Deposition of 0.5 ml of frozen-thawed semen on each infundibulum (Experiment 1) reduced both ovum recovery and fertilization. In ten cows inseminated on the infundibulum, ova representing 43% of ovulation points were recovered and 9% of these recovered ova were fertilized. In ten control cows, ova representing 80% of ovulation points were recovered and 62% of them were fertilized. In a 2 x 2 experiment with 36 superovulating cows (Experiment 2), 1 ml of diluted fresh or frozen semen was deposited either near the uterotubal junction or in the uterine body. The overall fertilization rate was 61%, with no significant effect of site of semen deposition or type of semen used. In Experiment 3, 2 or 3 ml of neat semen (average of 4.4 billion sperm) was deposited in the uterus of 12 cows; 183 of 197 intact ova (93%) were fertilized. In 56 control cows inseminated with 0.5 to 1.5 ml of frozen diluted semen (average of 70 million sperm), 502 of 947 intact ova were fertilized (53%, P<0.001). Insemination with high numbers of fresh sperm overcame problems of sperm loss or sperm transport and improved the fertilization rate. 相似文献
76.
77.
The neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/-) retina, rods are converted into functional cone-like cells. The Nrl(-/-) retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes. Here we explore the mechanism of rosette development in the Nrl(-/-) retina. We report that rosettes first appear at postnatal day (P)8, and that the structure of nascent rosettes is morphologically distinct from what is seen in the adult retina. The lumen of these nascent rosettes contains a population of aberrant cells protruding into the subretinal space that induce infolding of the ONL. Morphologically adult rosettes do not contain any cell bodies and are first detected at P15. The cells found in nascent rosettes are photoreceptors in origin but lack inner and outer segments. We show that the adherens junctions between photoreceptors and Müller glia which comprise the retinal outer limiting membrane (OLM) are not uniformly formed in the Nrl(-/-) retina and thus allow protrusion of a population of developing photoreceptors into the subretinal space where their maturation becomes delayed. These data suggest that the rosettes of the Nrl(-/-) retina arise due to defects in the OLM and delayed maturation of a subset of photoreceptors, and that rods may play an important role in the proper formation of the OLM. 相似文献
78.
Evetovich TK Conley DS Todd JB Rogers DC Stone TL 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(1):96-99
The purpose of the study was to examine the potential for using the mechanomyographic (MMG) signal as a biofeedback method to enhance muscular relaxation and to improve performance during forearm flexion repetitions to fatigue. Twelve adult (mean +/- SD; age: 22.0 +/- 1.1 years) moderately trained subjects (weight: 82.3 +/- 29.2 kg; height: 165.7 +/- 49.0 cm) were instructed to relax the biceps brachii muscle using MMG biofeedback (BIO) provided by viewing a computer screen graphically displaying the MMG signal and then without using MMG biofeedback (NOBIO). Electromyographic (EMG) and MMG signals were detected midway over the biceps brachii during the relaxation protocol. In subsequent visits to the laboratory, subjects performed as many repetitions as possible at 85% of 1 repetition maximum with BIO and NOBIO using the seated preacher curl exercise. Two-way (biofeedback x gender) mixed factorial analyses of variance revealed significantly (p < 0.05) lower MMG (mean +/- SEM; BIO = 0.6 +/- 0.1 mV; NOBIO = 1.1 +/- 0.2 mV) and EMG amplitudes (BIO = 6.6 +/- 0.6 microV; NOBIO = 9.4 +/- 1.4 microV) for BIO when subjects were instructed to relax the biceps brachii muscle. There was no significant difference in the number of forearm flexion repetitions performed for BIO (mean +/- SD; 7.9 +/- 0.4 reps) vs. NOBIO (8.1 +/- 0.6 reps). The results of the present study revealed that using MMG as a biofeedback technique can enhance the development of muscle relaxation, but is not useful in delaying fatigue during forearm flexion repetitions. Our results may have been influenced by a relatively short training phase designed to teach subjects to use the MMG signal as a biofeedback method. Future studies are needed to determine whether MMG biofeedback can be used for other purposes. If MMG is found to be useful as a biofeedback method, it has some distinct practical advantages over EMG that the strength and conditioning athlete and professional may find appealing. 相似文献
79.
Amara CE Marcinek DJ Shankland EG Schenkman KA Arakaki LS Conley KE 《Methods (San Diego, Calif.)》2008,46(4):312-318
Mitochondria integrate the key metabolic fluxes in the cell. This role places this organelle at the center of cellular energetics and, hence, mitochondrial dysfunction underlies a growing number of human disorders and age-related degenerative diseases. Here we present novel analytical and technical methods for evaluating mitochondrial metabolism and (dys)function in human muscle in vivo. Three innovations involving advances in optical spectroscopy (OS) and magnetic resonance spectroscopy (MRS) permit quantifying key compounds in energy metabolism to yield mitochondrial oxidation and phosphorylation fluxes. The first of these uses analytical methods applied to optical spectra to measure hemoglobin (Hb) and myoglobin (Mb) oxygenation states and relative contents ([Hb]/[Mb]) to determine mitochondrial respiration (O2 uptake) in vivo. The second uses MRS methods to quantify key high-energy compounds (creatine phosphate, PCr, and adenosine triphosphate, ATP) to determine mitochondrial phosphorylation (ATP flux) in vivo. The third involves a functional test that combines these spectroscopic approaches to determine mitochondrial energy coupling (ATP/O2), phosphorylation capacity (ATPmax) and oxidative capacity (O2max) of muscle. These new developments in optical and MR tools allow us to determine the function and capacity of mitochondria noninvasively in order to identify specific defects in vivo that are associated with disease in human and animal muscle. The clinical implication of this unique diagnostic probe is the insight into the nature and extent of dysfunction in metabolic and degenerative disorders, as well as the ability to follow the impact of interventions designed to reverse these disorders. 相似文献
80.
Justine M. Abais Min Xia Guangbi Li Yang Chen Sabena M. Conley Todd W. B. Gehr Krishna M. Boini Pin-Lan Li 《The Journal of biological chemistry》2014,289(39):27159-27168
NADPH oxidase-derived reactive oxygen species (ROS) have been reported to activate NLRP3 inflammasomes resulting in podocyte and glomerular injury during hyperhomocysteinemia (hHcys). However, the mechanism by which the inflammasome senses ROS is still unknown in podocytes upon hHcys stimulation. The current study explored whether thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of the antioxidant thioredoxin and ROS sensor, mediates hHcys-induced NLRP3 inflammasome activation and consequent glomerular injury. In cultured podocytes, size exclusion chromatography and confocal microscopy showed that inhibition of TXNIP by siRNA or verapamil prevented Hcys-induced TXNIP protein recruitment to form NLRP3 inflammasomes and abolished Hcys-induced increases in caspase-1 activity and IL-1β production. TXNIP inhibition protected podocytes from injury as shown by normal expression levels of podocyte markers, podocin and desmin. In vivo, adult C57BL/6J male mice were fed a folate-free diet for 4 weeks to induce hHcys, and TXNIP was inhibited by verapamil (1 mg/ml in drinking water) or by local microbubble-ultrasound TXNIP shRNA transfection. Evidenced by immunofluorescence and co-immunoprecipitation studies, glomerular inflammasome formation and TXNIP binding to NLRP3 were markedly increased in mice with hHcys but not in TXNIP shRNA-transfected mice or those receiving verapamil. Furthermore, TXNIP inhibition significantly reduced caspase-1 activity and IL-1β production in glomeruli of mice with hHcys. Correspondingly, TXNIP shRNA transfection and verapamil attenuated hHcys-induced proteinuria, albuminuria, glomerular damage, and podocyte injury. In conclusion, our results demonstrate that TXNIP binding to NLRP3 is a key signaling mechanism necessary for hHcys-induced NLRP3 inflammasome formation and activation and subsequent glomerular injury. 相似文献